On Kp,q -FACTORIZATION OF COMPLETE BIPARTITE MULTIGRAPHS

被引:0
作者
Li, Mingchao [1 ]
Wang, Jian [2 ]
机构
[1] Soochow Univ, Dept Math, Suzhou 215006, Peoples R China
[2] Nantong Vocat Univ, Nantong 226007, Peoples R China
基金
中国国家自然科学基金;
关键词
Complete bipartite multigraph; factor; factorization; PATH FACTORIZATION; GRAPHS; P4K-1-FACTORIZATION;
D O I
10.1007/s13226-017-0221-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let lambda K-m,K-n be a complete bipartite multigraph with two partite sets having m and n vertices, respectively. A K-p,K-q-factorization of lambda K-m,K-n is a set of edge-disjoint K-p,K-q-factors of lambda K-m,K-n which partition the set of edges of lambda K-m,K-n. When p = 1 and q is a prime number, Wang, in his paper [On K-1,K-q-factorization of complete bipartite graph, Discrete Math., 126: (1994), 359-364, investigated the K-1,K-q-factorization of K-m,K-n and gave a sufficient condition for such a factorization to exist. In papers [K-1,K-k-factorization of complete bipartite graphs, Discrete Math., 259: 301-306 (2002),, K-p,K-q-factorization of complete bipartite graphs, Sci. China Ser. A-Math., 47: (2004), 473-479], Du and Wang extended Wang's result to the case that p and q are any positive integers. In this paper, we give a sufficient condition for, lambda K-m,K-n to have a K-p,K-q-factorization. As a special case, it is shown that the necessary condition for the K-p,K-q-factorization of, lambda K-m,K-n is always sufficient when p : q = k : (k + 1) for any positive integer k.
引用
收藏
页码:221 / 231
页数:11
相关论文
共 17 条
[1]  
Bondy J., 2008, GRADUATE TEXTS MATH
[2]   K1,p(2)-factorization of complete bipartite graphs [J].
Du, B .
DISCRETE MATHEMATICS, 1998, 187 (1-3) :273-279
[3]   The proof of Ushio's conjecture concerning path factorization of complete bipartite graphs [J].
Du, BL ;
Wang, J .
SCIENCE IN CHINA SERIES A-MATHEMATICS, 2006, 49 (03) :289-299
[4]   P4k-1-factorization of complete bipartite graphs [J].
Du, BL ;
Wang, J .
SCIENCE IN CHINA SERIES A-MATHEMATICS, 2005, 48 (04) :539-547
[5]   Kp,q-factorization of complete bipartite graphs [J].
Du, BL ;
Wang, J .
SCIENCE IN CHINA SERIES A-MATHEMATICS, 2004, 47 (03) :473-479
[6]   K1,k-factorization of complete bipartite graphs [J].
Du, BL ;
Wang, J .
DISCRETE MATHEMATICS, 2002, 259 (1-3) :301-306
[7]  
DU BL, 2000, AUSTR J COMBIN, V21, P197
[8]   Unbalanced star-factorisations of complete bipartite graphs [J].
Martin, N .
DISCRETE MATHEMATICS, 2004, 283 (1-3) :159-165
[9]   Complete bipartite factorisations by complete bipartite graphs [J].
Martin, N .
DISCRETE MATHEMATICS, 1997, 167 :461-480
[10]   G-DESIGNS AND RELATED DESIGNS [J].
USHIO, K .
DISCRETE MATHEMATICS, 1993, 116 (1-3) :299-311