Relation between wiener numbers of quasi-hexagonal chains and quasi-polyomino chains

被引:3
作者
Xie, Mingfang [1 ]
Zhang, Fuji [2 ]
机构
[1] Fujian Agr & Forestry Univ, Coll Jinshan, Fuzhou 350002, Peoples R China
[2] Xiamen Univ, Inst Math, Xiamen 361005, Peoples R China
关键词
Hexagonal chain; polyomino chain; quasi-hexagonal chains; quasi-polyomino chain; Wiener number; BENZENOID HYDROCARBONS; SYSTEMS; INDEX; PHENYLENES;
D O I
10.1007/s11424-010-7024-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Q (n) and B (n) denote a quasi-polyomino chain with n squares and a quasi-hexagonal chain with n hexagons, respectively. In this paper, the authors establish a relation between the Wiener numbers of Q (n) and R(n): W(Q(n)) = 1/4 [W(R(n)) - 8/3n(3) + 14/3n +3] . And the extremal quasi-polyomino chains with respect to the Wiener number are determined. Furthermore, several classes of polyomino chains with large Wiener numbers are ordered.
引用
收藏
页码:873 / 882
页数:10
相关论文
共 15 条
[1]  
[Anonymous], 1990, Distance in Graphs
[2]  
[Anonymous], 1986, MATCH-COMMUN MATH CO
[3]   A simple formula for the calculation of the Wiener index of hexagonal chains [J].
Dobrynin, AA .
COMPUTERS & CHEMISTRY, 1999, 23 (01) :43-48
[4]  
Dobrynin AA, 1999, COMPUT CHEM, V23, P571, DOI 10.1016/S0097-8485(99)00035-2
[5]   Wiener index of hexagonal systems [J].
Dobrynin, AA ;
Gutman, I ;
Klavzar, S ;
Zigert, P .
ACTA APPLICANDAE MATHEMATICAE, 2002, 72 (03) :247-294
[6]  
Gutman I, 1998, ACH-MODELS CHEM, V135, P45
[7]   WIENER NUMBERS OF RANDOM BENZENOID CHAINS [J].
GUTMAN, I ;
KENNEDY, JW ;
QUINTAS, LV .
CHEMICAL PHYSICS LETTERS, 1990, 173 (04) :403-408
[8]  
GUTMAN I, 1992, TOP CURR CHEM, V162, P1
[9]   WIENER NUMBERS OF BENZENOID HYDROCARBONS - 2 THEOREMS [J].
GUTMAN, I .
CHEMICAL PHYSICS LETTERS, 1987, 136 (02) :134-136
[10]  
Gutman I., 1986, Mathematical concepts in organic chemistry, DOI 10.1515/9783112570180