Small doubling in ordered nilpotent groups of class 2

被引:2
作者
Freiman, Gregory A. [1 ]
Herzog, Marcel [1 ]
Longobardi, Patrizia [2 ]
Maj, Mercede [2 ]
Stanchescu, Yonutz V. [3 ,4 ]
机构
[1] Tel Aviv Univ, Dept Math, Raymond & Beverly Sackler Fac Exact Sci, Tel Aviv, Israel
[2] Univ Salerno, Dipartimento Matemat, Via Giovanni Paolo 2, I-84084 Salerno, Italy
[3] Open Univ Israel, IL-43107 Raanana, Israel
[4] Afeka Acad Coll, IL-69107 Tel Aviv, Israel
关键词
Ordered groups; Finite subsets; Small doubling; Nilpotent groups; FREIMANS THEOREM; FINITE SUBSETS; ABELIAN-GROUP; SET ADDITION; PRODUCT;
D O I
10.1016/j.ejc.2017.07.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is to present a complete description of the structure of finite subsets S of torsion-free nilpotent groups of class 2 satisfying vertical bar S-2 vertical bar = 3 vertical bar S vertical bar - 2. In view of results in [12], this gives a complete description of the structure of finite subsets with the above property in any torsion-free nilpotent group. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:87 / 95
页数:9
相关论文
共 25 条
  • [1] [Anonymous], 1996, INVERSE PROBLEMS GEO
  • [2] ON A PRODUCT OF FINITE SUBSETS IN A TORSION-FREE GROUP
    BRAILOVSKY, LV
    FREIMAN, GA
    [J]. JOURNAL OF ALGEBRA, 1990, 130 (02) : 462 - 476
  • [3] A nilpotent Freiman dimension lemma
    Breuillard, Emmanuel
    Green, Ben
    Tao, Terence
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2013, 34 (08) : 1287 - 1292
  • [4] The structure of approximate groups
    Breuillard, Emmanuel
    Green, Ben
    Tao, Terence
    [J]. PUBLICATIONS MATHEMATIQUES DE L IHES, 2012, (116): : 115 - 221
  • [5] APPROXIMATE GROUPS. I THE TORSION-FREE NILPOTENT CASE
    Breuillard, Emmanuel
    Green, Ben
    [J]. JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2011, 10 (01) : 37 - 57
  • [6] On the structure of subsets of an orderable group with some small doubling properties
    Freiman, G. A.
    Herzog, M.
    Longobardi, P.
    Maj, M.
    Plagne, A.
    Robinson, D. J. S.
    Stanchescu, Y. V.
    [J]. JOURNAL OF ALGEBRA, 2016, 445 : 307 - 326
  • [7] A small doubling structure theorem in a Baumslag-Solitar group
    Freiman, G. A.
    Herzog, M.
    Longobardi, P.
    Maj, M.
    Stanchescu, Y. V.
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2015, 44 : 106 - 124
  • [8] Direct and inverse problems in additive number theory and in non-abelian group theory
    Freiman, G. A.
    Herzog, M.
    Longobardi, P.
    Maj, M.
    Stanchescu, Y. V.
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2014, 40 : 42 - 54
  • [9] Freiman G. A., 1973, Number-theoretic studies in the Markov spectrum and in the structural theory of set addition (Russian), P175
  • [10] Freiman G. A., 1959, I. Izv. Vyssh. Uchebn. Zaved., Mat., V1959, P202