Arrhythmia Classification via Time and Frequency Domain Analyses of Ventricular and Atrial Contractions

被引:5
|
作者
Jekova, Irena I. [1 ]
Stoyanov, Todor V. [1 ]
Dotsinsky, Ivan A. [1 ]
机构
[1] Bulgarian Acad Sci, Inst Biophys & Biomed Engn, Acad G Bonchev Str,Bl 105, Sofia 1113, Bulgaria
来源
关键词
FIBRILLATION DETECTION; ACCURATE;
D O I
10.22489/CinC.2017.345-029
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Atrial fibrillation (AF) is associated with significant risk of heart failure and consequent death. Its episodic appearance, the wide variety of arrhythmias exhibiting irregular AF-like RR intervals and noises accompanying the ECG acquisition, impede the reliable AF detection. Therefore, the Computing in Cardiology Challenge 2017 organizers encourage the development of methods for classification of short, single-lead ECG as AF, normal sinus rhythm (NSR), other rhythm (OR), or noisy signal. The arrhythmia classification module presented in this paper involves procedures for QRS detection and classification, P-waves detection, feature calculation in the time and frequency domains. The applied decision rule is a classification tree. The scores over the training (test subset) [whole test] datasets are: F-NSR = 0.82(0.81); F-AF = 0.62(0.61); F-OR = 0.61(0.53), F1 = 0.68 (0.65) [0.64].
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Analysis of atrial and ventricular premature contractions using the Short Time Fourier Transform with the window size fixed in the frequency domain
    Mateo, Carlos
    Talavera, Juan Antonio
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2021, 69
  • [2] Time series clustering and classification via frequency domain methods
    Holan, Scott H.
    Ravishanker, Nalini
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2018, 10 (06):
  • [3] Knowledge transfer via distillation from time and frequency domain for time series classification
    Kewei Ouyang
    Yi Hou
    Ye Zhang
    Chao Ma
    Shilin Zhou
    Applied Intelligence, 2023, 53 : 1505 - 1516
  • [4] Knowledge transfer via distillation from time and frequency domain for time series classification
    Ouyang, Kewei
    Hou, Yi
    Zhang, Ye
    Ma, Chao
    Zhou, Shilin
    APPLIED INTELLIGENCE, 2023, 53 (02) : 1505 - 1516
  • [5] Research on Arrhythmia Classification by Using Convolutional Neural Network with Mixed Time-Frequency Domain Features
    Lü H.
    Jiang M.-F.
    Li Y.
    Zhang J.-C.
    Wang Z.-K.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2023, 51 (03): : 701 - 711
  • [6] Multi-type arrhythmia classification: Assessment of the potential of time and frequency domain features and different classifiers
    Jekova I.
    Bortolan G.
    Stoyanov T.
    Dotsinsky I.
    International Journal Bioautomation, 2020, 24 (02) : 153 - 172
  • [7] Classification of Faults in Multicore Cable via Time-Frequency Domain Reflectometry
    Bang, Su Sik
    Shin, Yong-June
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2020, 67 (05) : 4163 - 4171
  • [8] ECG arrhythmia classification using time frequency distribution techniques
    Sultan Qurraie S.
    Ghorbani Afkhami R.
    Biomedical Engineering Letters, 2017, 7 (4) : 325 - 332
  • [9] Ventricular arrhythmia detection using time-domain template algorithms
    Schuckers, SC
    Xu, XY
    Schuckers, ME
    Jenkins, JM
    PROCEEDINGS OF THE IEEE 24TH ANNUAL NORTHEAST BIOENGINEERING CONFERENCE, 1998, : 21 - 23
  • [10] HIGH-FREQUENCY ATRIAL STIMULATION VIA ESOPHAGUS ELECTRODE IN ELECTROTHERAPY OF TACHYCARDIAL ATRIAL ARRHYTHMIA
    VOLKMANN, H
    PALIEGE, R
    SONNENSCHEIN, R
    DEUTSCHE GESUNDHEITSWESEN-ZEITSCHRIFT FUR KLINISCHE MEDIZIN, 1978, 33 (33): : 1559 - 1564