Metal-Organic Framework-Based Materials for Energy Conversion and Storage

被引:399
作者
Qiu, Tianjie [1 ,2 ]
Liang, Zibin [1 ,2 ]
Guo, Wenhan [1 ,2 ]
Tabassum, Hassina [1 ,2 ]
Gao, Song [1 ,2 ]
Zou, Ruqiang [1 ,2 ]
机构
[1] Peking Univ, Coll Engn, Dept Mat Sci & Engn, Beijing Key Lab Theory & Technol Adv Battery Mat, Beijing 100871, Peoples R China
[2] Peking Univ, Inst Clean Energy, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
OXYGEN REDUCTION; HIGHLY EFFICIENT; ELECTRICAL-CONDUCTIVITY; EVOLUTION; ELECTROCATALYSTS; PERFORMANCE; TEMPLATE; NITROGEN; SITES; NANOSTRUCTURES;
D O I
10.1021/acsenergylett.9b02625
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Metal-organic frameworks (MOFs) have emerged as desirable cross-functional platforms for electrochemical and photochemical energy conversion and storage (ECS) systems owing to their highly ordered and tunable compositions and structures. In this Review, we present engineering principles promoting the electro-/photochemical performance of MOF-based materials for ECS by component design and nanostructuring. Through the discussion of the engineering strategies of pristine MOFs, MOF composites, and their derivatives for ECS, the superiority and composition-structure-activity relationships of the engineered MOF-based materials with advanced components and nanostructures will be clarified. Finally, we provide a concluding discussion on the challenges and direction of future development in this emerging area of MOF-based materials for ECS.
引用
收藏
页码:520 / 532
页数:25
相关论文
共 110 条
[1]  
[Anonymous], 2016, Angew. Chem., DOI [10.1002/ange.201603990, DOI 10.1002/ANGE.201603990]
[2]   Lithiated Defect Sites in Zr Metal-Organic Framework for Enhanced Sulfur Utilization in Li-S Batteries [J].
Baumann, Avery E. ;
Burns, David A. ;
Diaz, Jose C. ;
Thoi, V. Sara .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (02) :2159-2167
[3]   Metal-Organic Frameworks: From Molecules/Metal Ions to Crystals to Superstructures [J].
Carne-Sanchez, Arnau ;
Imaz, Inhar ;
Stylianou, Kyriakos C. ;
Maspoch, Daniel .
CHEMISTRY-A EUROPEAN JOURNAL, 2014, 20 (18) :5192-5201
[4]   Metal-Organic Framework Composites for Catalysis [J].
Chen, Liyu ;
Xu, Qiang .
MATTER, 2019, 1 (01) :57-89
[5]   Metal-Organic Framework Template Derived Porous CoSe2 Nanosheet Arrays for Energy Conversion and Storage [J].
Chen, Tian ;
Li, Songzhan ;
Wen, Jian ;
Gui, Pengbin ;
Fang, Guojia .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (41) :35927-35935
[6]   Enhanced oxygen reduction with single-atomic-site iron catalysts for a zinc-air battery and hydrogen-air fuel cell [J].
Chen, Yuanjun ;
Ji, Shufang ;
Zhao, Shu ;
Chen, Wenxing ;
Dong, Juncai ;
Cheong, Weng-Chon ;
Shen, Rongan ;
Wen, Xiaodong ;
Zheng, Lirong ;
Rykov, Alexandre I. ;
Cai, Shichang ;
Tang, Haolin ;
Zhuang, Zhongbin ;
Chen, Chen ;
Peng, Qing ;
Wang, Dingsheng ;
Li, Yadong .
NATURE COMMUNICATIONS, 2018, 9
[7]   Lattice-strained metal-organic-framework arrays for bifunctional oxygen electrocatalysis [J].
Cheng, Weiren ;
Zhao, Xu ;
Su, Hui ;
Tang, Fumin ;
Che, Wei ;
Zhang, Hui ;
Liu, Qinghua .
NATURE ENERGY, 2019, 4 (02) :115-122
[8]   Copper-Organic Framework Fabricated with CuS Nanoparticles: Synthesis, Electrical Conductivity, and Electrocatalytic Activities for Oxygen Reduction Reaction [J].
Cho, Keumnam ;
Han, Sung-Hwan ;
Suh, Myunghyun Paik .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (49) :15301-15305
[9]   Correlated defect nanoregions in a metal-organic framework [J].
Cliffe, Matthew J. ;
Wan, Wei ;
Zou, Xiaodong ;
Chater, Philip A. ;
Kleppe, Annette K. ;
Tucker, Matthew G. ;
Wilhelm, Heribert ;
Funnell, Nicholas P. ;
Coudert, Francois-Xavier ;
Goodwin, Andrew L. .
NATURE COMMUNICATIONS, 2014, 5
[10]   Exploiting redox activity in metal-organic frameworks: concepts, trends and perspectives [J].
D'Alessandro, D. M. .
CHEMICAL COMMUNICATIONS, 2016, 52 (58) :8957-8971