A Statistical Methodology to Estimate Soiling Losses on Photovoltaic Solar Plants

被引:9
作者
Ribeiro, Kymberlim [1 ]
Santos, Ricardo [1 ]
Saraiva, Erlandson [2 ]
Rajagopal, Ram [3 ]
机构
[1] Univ Fed Mato Grosso do Sul, Coll Comp, BR-79070900 Campo Grande, MS, Brazil
[2] Univ Fed Mato Grosso do Sul, Inst Math, BR-79074460 Campo Grande, MS, Brazil
[3] Stanford Univ, Dept Civil & Environm Engn, Stanford, CA 94305 USA
来源
JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME | 2021年 / 143卷 / 06期
关键词
efficiency; energy; measurement; photovoltaics; solar; DUST; PERFORMANCE; HETEROSCEDASTICITY;
D O I
10.1115/1.4050948
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
One of the challenges in photovoltaic solar plants is the performance maintenance in the presence of adverse environmental conditions. Soiling on the solar panels is one of those challenges having a high decrease impact on the power generation. This work proposes a statistical methodology that estimates the energy losses due to soiling on photovoltaic solar plants. Using environmental and power generation data, the proposed methodology predicts the energy generation using a regression model,. and then evaluates if the differences between the observed energy generation data and the predicted energy data are due to soiling. The experiments to validate the system are based on one-year dataset of environmental and power generation data from a solar plant located in the northeast region of Brazil. The results showed that the daily energy losses estimates ranged from 2.20% up to 12.31% in a period less than a month.
引用
收藏
页数:6
相关论文
共 20 条
[1]   Soiling Loss Rate Measurements of Photovoltaic Modules in a Hot and Humid Desert Environment [J].
Abdallah, Marwan ;
Khaiyat, Ahmad ;
Basaheeh, Ali ;
Kotsovos, Konstantinos ;
Ballard, Ian ;
AlSaggaf, Ahmed ;
Gereige, Issam ;
Theron, Ricardo .
JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME, 2021, 143 (03)
[2]   SIMPLE TEST FOR HETEROSCEDASTICITY AND RANDOM COEFFICIENT VARIATION [J].
BREUSCH, TS ;
PAGAN, AR .
ECONOMETRICA, 1979, 47 (05) :1287-1294
[3]  
Casella G., 2002, STAT INFERENCE
[4]  
Catelani M., 2012, 2012 IEEE International Energy Conference (ENERGYCON 2012), P45, DOI 10.1109/EnergyCon.2012.6348198
[5]   Simple Model for Predicting Time Series Soiling of Photovoltaic Panels [J].
Coello, Merissa ;
Boyle, Liza .
IEEE JOURNAL OF PHOTOVOLTAICS, 2019, 9 (05) :1382-1387
[6]   DIAGNOSTICS FOR HETEROSCEDASTICITY IN REGRESSION [J].
COOK, RD ;
WEISBERG, S .
BIOMETRIKA, 1983, 70 (01) :1-10
[7]  
Dunn L, 2013, IEEE PHOT SPEC CONF, P658, DOI 10.1109/PVSC.2013.6744236
[8]   EFFECT OF DUST WITH DIFFERENT PHYSICAL-PROPERTIES ON THE PERFORMANCE OF PHOTOVOLTAIC CELLS [J].
ELSHOBOKSHY, MS ;
HUSSEIN, FM .
SOLAR ENERGY, 1993, 51 (06) :505-511
[9]   Integration of Soiling-Rate Measurements and Cleaning Strategies in Yield Analysis of Parabolic Trough Plants [J].
Fabian, Wolfertstetter ;
Stefan, Wilbert ;
Juergen, Dersch ;
Simon, Dieckmann ;
Robert, Pitz-Paal ;
Abdellatif, Ghennioui .
JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME, 2018, 140 (04)
[10]  
Gostein M, 2014, 2014 IEEE 40TH PHOTOVOLTAIC SPECIALIST CONFERENCE (PVSC), P885, DOI 10.1109/PVSC.2014.6925056