Precise electrochemical fabrication of sub-20 nm solid-state nanopores for single-molecule biosensing

被引:51
作者
Ayub, Mariam [1 ,2 ]
Ivanov, Aleksandar [1 ,2 ]
Hong, Jongin [1 ,2 ]
Kuhn, Phillip [1 ,2 ]
Instuli, Emanuele [1 ,2 ]
Edel, Joshua B. [1 ,2 ]
Albrecht, Tim [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Chem, London SW7 2AZ, England
[2] Univ London Imperial Coll Sci Technol & Med, Inst Biomed Engn, London SW7 2AZ, England
基金
英国工程与自然科学研究理事会;
关键词
DNA TRANSLOCATION; NUCLEIC-ACIDS; ION-TRANSPORT; MEMBRANES; RECTIFICATION;
D O I
10.1088/0953-8984/22/45/454128
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
It has recently been shown that solid-state nanometer-scale pores ('nanopores') can be used as highly sensitive single-molecule sensors. For example, electrophoretic translocation of DNA, RNA and proteins through such nanopores has enabled both detection and structural analysis of these complex biomolecules. Control over the nanopore size is critical as the pore must be comparable in size to the analyte molecule in question. The most widely used fabrication methods are based on focused electron or ion beams and thus require (scanning) transmission electron microscopy and focused ion beam (FIB) instrumentation. Even though very small pores have been made using these approaches, several issues remain. These include the requirement of being restricted to rather thin, mechanically less stable membranes, particularly for pore diameters in the single-digit nanometer range, lack of control of the surface properties at and inside the nanopore, and finally, the fabrication cost. In the proof-of-concept study, we report on a novel and simple route for fabricating metal nanopores with apparent diameters below 20 nm using electrodeposition and real-time ionic current feedback in solution. This fabrication approach inserts considerable flexibility into the kinds of platforms that can be used and the nanopore membrane material. Starting from much larger pores, which are straightforward to make using FIB or other semiconductor fabrication methods, we electrodeposit Pt at the nanopore interface while monitoring its ionic conductance at the same time in a bi-potentiostatic setup. Due to the deposition of Pt, the nanopore decreases in size, resulting in a decrease of the pore conductance. Once a desired pore conductance has been reached, the electrodeposition process is stopped by switching the potential of the membrane electrode and the fabrication process is complete. Furthermore, we demonstrate that these pores can be used for single-biomolecule analysis, such as that of lambda-DNA, which we use in a proof-of-concept study. Importantly, our approach is applicable to single nanopores as well as nanopore arrays, and can easily be extended to deposits of metal other than Pt.
引用
收藏
页数:8
相关论文
共 62 条
  • [1] Effects of Electroosmotic Flow on Ionic Current Rectification in Conical Nanopores
    Ai, Ye
    Zhang, Mingkan
    Joo, Sang W.
    Cheney, Marcos A.
    Qian, Shizhi
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (09) : 3883 - 3890
  • [2] Diode-like single-ion track membrane prepared by electro-stopping
    Apel, PY
    Korchev, YE
    Siwy, Z
    Spohr, R
    Yoshida, M
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2001, 184 (03) : 337 - 346
  • [3] Nanopore/electrode structures for single-molecule biosensing
    Ayub, Mariam
    Ivanov, Aleksandar
    Instuli, Emanuele
    Cecchini, Michael
    Chansin, Guillaume
    McGilvery, Catriona
    Hong, Jongin
    Baldwin, Geoff
    McComb, David
    Edel, Joshua B.
    Albrecht, Tim
    [J]. ELECTROCHIMICA ACTA, 2010, 55 (27) : 8237 - 8243
  • [4] The potential and challenges of nanopore sequencing
    Branton, Daniel
    Deamer, David W.
    Marziali, Andre
    Bayley, Hagan
    Benner, Steven A.
    Butler, Thomas
    Di Ventra, Massimiliano
    Garaj, Slaven
    Hibbs, Andrew
    Huang, Xiaohua
    Jovanovich, Stevan B.
    Krstic, Predrag S.
    Lindsay, Stuart
    Ling, Xinsheng Sean
    Mastrangelo, Carlos H.
    Meller, Amit
    Oliver, John S.
    Pershin, Yuriy V.
    Ramsey, J. Michael
    Riehn, Robert
    Soni, Gautam V.
    Tabard-Cossa, Vincent
    Wanunu, Meni
    Wiggin, Matthew
    Schloss, Jeffery A.
    [J]. NATURE BIOTECHNOLOGY, 2008, 26 (10) : 1146 - 1153
  • [5] Fabrication and characterization of solid-state nanopores using a field emission scanning electron microscope
    Chang, H
    Iqbal, SM
    Stach, EA
    King, AH
    Zaluzec, NJ
    Bashir, R
    [J]. APPLIED PHYSICS LETTERS, 2006, 88 (10)
  • [6] Single-molecule Spectroscopy using nanoporous membranes
    Chansin, Guillaume A. T.
    Mulero, Rafael
    Hong, Jongin
    Kim, Min Jun
    deMello, Andrew J.
    Edel, Joshua B.
    [J]. NANO LETTERS, 2007, 7 (09) : 2901 - 2906
  • [7] Probing single DNA molecule transport using fabricated nanopores
    Chen, P
    Gu, JJ
    Brandin, E
    Kim, YR
    Wang, Q
    Branton, D
    [J]. NANO LETTERS, 2004, 4 (11) : 2293 - 2298
  • [8] Atomic layer deposition to fine-tune the surface properties and diameters of fabricated nanopores
    Chen, P
    Mitsui, T
    Farmer, DB
    Golovchenko, J
    Gordon, RG
    Branton, D
    [J]. NANO LETTERS, 2004, 4 (07) : 1333 - 1337
  • [9] Engineering SERS via absorption control in novel hybrid Ni/Au nanovoids
    Cole, Robin M.
    Mahajan, Sumeet
    Bartlett, Phil N.
    Baumberg, Jeremy J.
    [J]. OPTICS EXPRESS, 2009, 17 (16): : 13298 - 13308
  • [10] Nanopores and nucleic acids: prospects for ultrarapid sequencing
    Deamer, DW
    Akeson, M
    [J]. TRENDS IN BIOTECHNOLOGY, 2000, 18 (04) : 147 - 151