Adaptive partial graph learning and fusion for incomplete multi-view clustering

被引:9
|
作者
Zheng, Xiao [1 ]
Liu, Xinwang [1 ]
Chen, Jiajia [2 ]
Zhu, En [1 ]
机构
[1] Natl Univ Def Technol, Sch Comp Sci, Changsha 410073, Peoples R China
[2] Xuzhou Med Univ, Peoples Hosp Huaian 2, Affiliated Huaian Hosp, Dept Pharm, Huaian, Peoples R China
基金
中国国家自然科学基金;
关键词
clustering; incomplete data clustering; multiple view clustering; SCALE;
D O I
10.1002/int.22655
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Most of existing multi-view clustering methods assume that different feature views of data are fully observed. However, it is common that only portions of data features can be obtained in many practical applications. The presence of incomplete feature views hinders the performance of the conventional multi-view clustering methods to a large extent. Recently proposed incomplete multi-view clustering methods often focus on directly learning a common representation or a consensus affinity similarity graph from available feature views while ignore the valuable information hidden in the missing views. In this study, we present a novel incomplete multi-view clustering method via adaptive partial graph learning and fusion (APGLF), which can capture the local data structure of both within-view and cross-view. Specifically, we use the available data of each view to learn a corresponding view-specific partial graph, in which the within-view local structure can be well preserved. Then we design a cross-view graph fusion term to learn a consensus complete graph for different views, which can take advantage of the complementary information hidden in the view-specific partial graphs learned from incomplete views. In addition, a rank constraint is imposed on the graph Laplacian matrix of the fused graph to better recover the optimal cluster structure of original data. Therefore, APGLF integrates within-view partial graph learning, cross-view partial graph fusion and cluster structure recovering into a unified framework. Experiments on five incomplete multi-view data sets are conducted to validate the efficacy of APGLF when compared with eight state-of-the-art methods.
引用
收藏
页码:991 / 1009
页数:19
相关论文
共 50 条
  • [21] Scalable and Structural Multi-View Graph Clustering With Adaptive Anchor Fusion
    Wang, Siwei
    Liu, Xinwang
    Liu, Suyuan
    Tu, Wenxuan
    Zhu, En
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 : 4627 - 4639
  • [22] Adaptive Feature Imputation with Latent Graph for Deep Incomplete Multi-View Clustering
    Pu, Jingyu
    Cui, Chenhang
    Chen, Xinyue
    Ren, Yazhou
    Pu, Xiaorong
    Hao, Zhifeng
    Yu, Philip S.
    He, Lifang
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 13, 2024, : 14633 - 14641
  • [23] Multi-view subspace clustering with incomplete graph information
    He, Xiaxia
    Wang, Boyue
    Luo, Cuicui
    Gao, Junbin
    Hu, Yongli
    Yin, Baocai
    IET COMPUTER VISION, 2022,
  • [24] Refining Graph Structure for Incomplete Multi-View Clustering
    Li, Xiang-Long
    Chen, Man-Sheng
    Wang, Chang-Dong
    Lai, Jian-Huang
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (02) : 2300 - 2313
  • [25] Graph Contrastive Partial Multi-View Clustering
    Wang, Yiming
    Chang, Dongxia
    Fu, Zhiqiang
    Wen, Jie
    Zhao, Yao
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 (6551-6562) : 6551 - 6562
  • [26] Incomplete Multi-View Clustering with Regularized Hierarchical Graph
    Zhao, Shuping
    Fei, Lunke
    Wen, Jie
    Zhang, Bob
    Zhao, Pengyang
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 3060 - 3068
  • [27] Generative Partial Multi-View Clustering With Adaptive Fusion and Cycle Consistency
    Wang, Qianqian
    Ding, Zhengming
    Tao, Zhiqiang
    Gao, Quanxue
    Fu, Yun
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 1771 - 1783
  • [28] Multi-view attributed graph clustering based on graph diffusion convolution with adaptive fusion
    Zhou, Lijuan
    Guo, Yiwei
    Zhang, Zhihong
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 260
  • [29] Robust Mixed-order Graph Learning for incomplete multi-view clustering
    Guo, Wei
    Che, Hangjun
    Leung, Man-Fai
    Jin, Long
    Wen, Shiping
    INFORMATION FUSION, 2025, 115
  • [30] Fast and General Incomplete Multi-view Adaptive Clustering
    Ji, Xia
    Yang, Lei
    Yao, Sheng
    Zhao, Peng
    Li, Xuejun
    COGNITIVE COMPUTATION, 2023, 15 (02) : 683 - 693