Determining of combustion process state based on flame images analysis using k-NN classification

被引:0
作者
Sawicki, Daniel [1 ]
机构
[1] Lublin Univ Technol, 38A Nadbystrzycka Str, PL-20618 Lublin, Poland
来源
PHOTONICS APPLICATIONS IN ASTRONOMY, COMMUNICATIONS, INDUSTRY, AND HIGH ENERGY PHYSICS EXPERIMENTS 2017 | 2017年 / 10445卷
关键词
flame; combustion; co-firing; classification; k-NN; image processing; RADIATION;
D O I
10.1117/12.2280817
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This paper presents comparison image classification method of combustion biomass and pulverized coal. Presented research is related with 20% weight fraction of the biomass. Defined two class of combustion: stable and unstable for nine variants with different power, secondary air value parameters and fixed amount biomass. Used k-nearest neighbors algorithm classification to test, validation and classify flame image which correspond with the state of the combustion process.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] A Classification Method of Photovoltaic Modules Shaded Area Based on Weighted K-nn
    Xia, Lin
    Li, Chenxi
    Zhang, Kanjian
    Wei, Haikun
    2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 4497 - 4503
  • [32] Text classification using scores based k-NN approach and term to category relevance weighting scheme
    Ben Afia, Ahmed
    Amiri, Hamid
    INTERNATIONAL JOURNAL OF SIGNAL AND IMAGING SYSTEMS ENGINEERING, 2016, 9 (4-5) : 283 - 290
  • [33] Defining the Features of EMG Signals on the Forearm of the Hand Using SVM, RF, k-NN Classification Algorithms
    Turgunov, Adilbek
    Zohirov, Kudratjon
    Ganiyev, Alisher
    Sharopova, Barno
    2020 INFORMATION COMMUNICATION TECHNOLOGIES CONFERENCE (ICTC), 2020, : 260 - 264
  • [34] Aceto-white temporal pattern classification using k-NN to identify precancerous cervical lesion in colposcopic images
    Acosta-Mesa, Hector-Gabriel
    Cruz-Ramirez, Nicandro
    Hernandez-Jimenez, Rodolfo
    COMPUTERS IN BIOLOGY AND MEDICINE, 2009, 39 (09) : 778 - 784
  • [35] EEG-Based Human Emotion Recognition Using k-NN Machine Learning
    Yusuf, A. A.
    Wijaya, S. K.
    Prajitno, P.
    PROCEEDINGS OF THE 4TH INTERNATIONAL SYMPOSIUM ON CURRENT PROGRESS IN MATHEMATICS AND SCIENCES (ISCPMS2018), 2019, 2168
  • [36] Shape and textural based image retrieval using K-NN classifier
    Pande, Sandeep Dwarkanath
    Rathod, Suresh Baliram
    Chetty, Manna Sheela Rani
    Pathak, Shantanu
    Jadhav, Pramod Pandurang
    Godse, Sachin P.
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2022, 43 (04) : 4757 - 4768
  • [37] A 3D Obstacle Classification Method in Point Clouds Using K-NN
    Tian, Yifei
    Song, Wei
    Fong, Simon
    Zou, Shuanghui
    Lee, Euy Soo
    Jongtae, Rhee
    BDIOT 2018: PROCEEDINGS OF THE 2018 2ND INTERNATIONAL CONFERENCE ON BIG DATA AND INTERNET OF THINGS, 2018, : 76 - 79
  • [38] Using k-NN to analyse images of diverse germination phenotypes and detect single seed germination in Miscanthus sinensis
    Awty-Carroll, Danny
    Clifton-Brown, John
    Robson, Paul
    PLANT METHODS, 2018, 14
  • [39] Detecting Diabetic Retinopathy in Fundus Images using Combined Enhanced Green and Value Planes (CEGVP) with k-NN
    Hardas, Minal
    Mathur, Sumit
    Bhaskar, Anand
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (01) : 260 - 268
  • [40] Brainwave Classification for Acute Ischemic Stroke Group Level Using k-NN Technique
    Omar, Wan RosemehahWan
    Fuad, Norfaiza
    NasirTaib, Mohd
    Jailani, Rozita
    Isa, Roshakimah Mohd
    Mohamad, Zunuwanas
    Sharif, Zaiton
    PROCEEDINGS FIFTH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS, MODELLING AND SIMULATION, 2014, : 117 - 120