On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators

被引:165
作者
Coville, Jerome [1 ]
机构
[1] INRA, UR Biostat & Proc Spatiaux 546, F-84000 Avignon, France
关键词
Non local diffusion operators; Principal eigenvalue; Non-trivial solution; Asymptotic behaviour; 2ND-ORDER ELLIPTIC-OPERATORS; PHASE-TRANSITIONS; SEED DISPERSAL; EIGENVALUE; EQUATION; MODEL; UNIQUENESS; EVOLUTION; MAXIMUM;
D O I
10.1016/j.jde.2010.07.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we are interested in the existence of a principal eigenfunction of a nonlocal operator which appears in the description of various phenomena ranging from population dynamics to micro-magnetism. More precisely, we study the following eigen-value problem: integral(Omega) J(x - y/g(y))phi(y)/g(n)(y)dy + a(x)phi = rho phi, where Omega subset of R-n is an open connected set. J a non-negative kernel and g a positive function. First, we establish a criterion for the existence of a principal eigenpair (lambda(p), phi(p)). We also explore the relation between the sign of the largest element of the spectrum with a strong maximum property satisfied by the operator. As an application of these results we construct and characterise the solutions of some nonlinear nonlocal reaction diffusion equations. (C) 2010 Published by Elsevier Inc.
引用
收藏
页码:2921 / 2953
页数:33
相关论文
共 40 条
[1]   A nonlocal anisotropic model for phase transitions - Part I: The Optimal Profile Problem [J].
Alberti, G ;
Bellettini, G .
MATHEMATISCHE ANNALEN, 1998, 310 (03) :527-560
[2]  
[Anonymous], 1998, GRADUATE STUD MATH
[3]   Existence, uniqueness and stability of the stationary solution to a nonlocal evolution equation arising in population dispersal [J].
Bates, Peter W. ;
Zhao, Guangyu .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 332 (01) :428-440
[4]   An integrodifferential model for phase transitions: Stationary solutions in higher space dimensions [J].
Bates, PW ;
Chmaj, A .
JOURNAL OF STATISTICAL PHYSICS, 1999, 95 (5-6) :1119-1139
[5]   Traveling waves in a convolution model for phase transitions [J].
Bates, PW ;
Fife, PC ;
Ren, XF ;
Wang, XF .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1997, 138 (02) :105-136
[6]   Analysis of the periodically fragmented environment model: I - Species persistence [J].
Berestycki, H ;
Hamel, F ;
Roques, L .
JOURNAL OF MATHEMATICAL BIOLOGY, 2005, 51 (01) :75-113
[7]   THE PRINCIPAL EIGENVALUE AND MAXIMUM PRINCIPLE FOR 2ND-ORDER ELLIPTIC-OPERATORS IN GENERAL DOMAINS [J].
BERESTYCKI, H ;
NIRENBERG, L ;
VARADHAN, SRS .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1994, 47 (01) :47-92
[8]   Liouville-type results for semilinear elliptic equations in unbounded domains [J].
Berestycki, Henri ;
Hamel, Francois ;
Rossi, Luca .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2007, 186 (03) :469-507
[9]   ON THE SPECTRAL THEORY OF ELLIPTIC DIFFERENTIAL OPERATORS .1. [J].
BROWDER, FE .
MATHEMATISCHE ANNALEN, 1961, 142 (01) :22-130
[10]   Long-distance seed dispersal in plant populations [J].
Cain, ML ;
Milligan, BG ;
Strand, AE .
AMERICAN JOURNAL OF BOTANY, 2000, 87 (09) :1217-1227