Schmidt gap in random spin chains

被引:7
作者
Torlai, Giacomo [1 ,2 ]
McAlpine, Kenneth D. [3 ]
De Chiara, Gabriele [3 ]
机构
[1] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada
[2] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada
[3] Queens Univ Belfast, Ctr Theoret Atom Mol & Opt Phys, Belfast BT7 1NN, Antrim, North Ireland
关键词
ONE-DIMENSIONAL ANTIFERROMAGNETS; QUANTUM RENORMALIZATION-GROUPS; 2-DIMENSIONAL ISING-MODEL; DENSITY-MATRIX; TRANSVERSE-FIELD; RANDOM IMPURITIES; HALDANE PHASE; ENTANGLEMENT; TRANSITIONS; BEHAVIOR;
D O I
10.1103/PhysRevB.98.085153
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We numerically investigate the low-lying entanglement spectrum of the ground state of random one-dimensional spin chains obtained after partition of the chain into two equal halves. We consider two paradigmatic models: the spin-1/2 random transverse-field Ising model, solved exactly, and the spin-1 random Heisenberg model, simulated using the density matrix renormalization group. In both cases we analyze the mean Schmidt gap, defined as the difference between the two largest eigenvalues of the reduced density matrix of one of the two partitions, averaged over many disorder realizations. We find that the Schmidt gap detects the critical point very well and scales with universal critical exponents.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Factorized ground state in dimerized spin chains
    Luca Giorgi, Gian
    PHYSICA SCRIPTA, 2010, T140
  • [42] Trends of information backflow in disordered spin chains
    Roy, Sudipto Singha
    Mishra, Utkarsh
    Rakshit, Debraj
    EPL, 2020, 129 (03)
  • [43] Quantum Discord and Information Deficit in Spin Chains
    Canosa, Norma
    Ciliberti, Leonardo
    Rossignoli, Raul
    ENTROPY, 2015, 17 (04) : 1634 - 1659
  • [44] QUANTUM DISCORD IN THE GROUND STATE OF SPIN CHAINS
    Sarandy, Marcelo S.
    De Oliveira, Thiago R.
    Amico, Luigi
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2013, 27 (1-3):
  • [45] Extensive nonadditive entropy in quantum spin chains
    Caruso, Filippo
    Tsallis, Constantino
    COMPLEXITY, METASTABILITY AND NONEXTENSIVITY, 2007, 965 : 51 - +
  • [46] Analytical and numerical studies of disordered spin-1 Heisenberg chains with aperiodic couplings
    Casa Grande, H. L.
    Laflorencie, N.
    Alet, F.
    Vieira, A. P.
    PHYSICAL REVIEW B, 2014, 89 (13):
  • [47] Quantum phase transition and composite excitations of antiferromagnetic spin trimer chains in a magnetic field
    Cheng, Jun-Qing
    Ning, Zhi-Yao
    Wu, Han-Qing
    Yao, Dao-Xin
    NPJ QUANTUM MATERIALS, 2024, 9 (01)
  • [48] Entanglement of spin-1/2 Heisenberg antiferromagnetic quantum spin chains
    da Silva, Saulo Luis Lima
    QUANTUM STUDIES-MATHEMATICS AND FOUNDATIONS, 2019, 6 (01) : 27 - 34
  • [49] Spin-Chain-Star Systems: Entangling Multiple Chains of Spin Qubits
    Grimaudo, Roberto
    Magalhaes de Castro, Antonio Sergio
    Messina, Antonino
    Valenti, Davide
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2022, 70 (06):
  • [50] Largest Schmidt eigenvalue of random pure states and conductance distribution in chaotic cavities
    Vivo, Pierpaolo
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2011,