Module-phase synchronization in complex dynamic system

被引:72
作者
Nian, Fuzhong [1 ,2 ]
Wang, Xingyuan [1 ]
Niu, Yujun [1 ]
Lin, Da [1 ]
机构
[1] Dalian Univ Technol, Fac Elect Informat & Elect Engn, Dalian 116024, Peoples R China
[2] Lanzhou Univ Technol, Sch Comp & Commun, Lanzhou 730050, Peoples R China
基金
中国国家自然科学基金;
关键词
Complex dynamic system; Module-phase synchronization; Chaos; HYBRID PROJECTIVE SYNCHRONIZATION; DIFFERENT CHAOTIC SYSTEMS; LAG SYNCHRONIZATION; NONLINEAR-SYSTEM; NETWORKS; OSCILLATORS; DELAYS; INPUT; STATE;
D O I
10.1016/j.amc.2010.07.059
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The concept of module-phase synchronization was proposed. The chaos synchronization between drive system and response system was achieved in module space and phase space respectively (module-phase synchronization). Different from the evolutions in real space, there is no pseudorandom behavior in phase space when module-phase synchronization achieve. All the phases of complex state variables switched between two fixed values which are determined by initial values of drive system. And the modules varied within a bounded field. The theoretical analysis and the simulations were also given. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:2481 / 2489
页数:9
相关论文
共 28 条
[1]   Synchronization in complex networks [J].
Arenas, Alex ;
Diaz-Guilera, Albert ;
Kurths, Jurgen ;
Moreno, Yamir ;
Zhou, Changsong .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2008, 469 (03) :93-153
[2]   Chaos synchronization between two different chaotic systems via nonlinear feedback control [J].
Chen, Heng-Hui ;
Sheu, Geeng-Jen ;
Lin, Yung-Lung ;
Chen, Chaio-Shiung .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (12) :4393-4401
[3]   Chaos and chaos synchronization for a non-autonomous rotational machine systems [J].
Chu, Yan-Dong ;
Zhang, Jian-Gang ;
Li, Xian-Feng ;
Chang, Ying-Xiang ;
Luo, Guan-Wei .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2008, 9 (04) :1378-1393
[4]   Hybrid projective synchronization in a chaotic complex nonlinear system [J].
Hu, Manfeng ;
Yang, Yongqing ;
Xu, Zhenyuan ;
Guo, Liuxiao .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2008, 79 (03) :449-457
[5]   Generalized projective synchronization of chaotic nonlinear gyros coupled with dead-zone input [J].
Hung, Meei-Ling ;
Yan, Jun-Juh ;
Liao, Teh-Lu .
CHAOS SOLITONS & FRACTALS, 2008, 35 (01) :181-187
[6]   Blowout bifurcation and stability of marginal synchronization of chaos [J].
Krawiecki, A ;
Matyjaskiewicz, S .
PHYSICAL REVIEW E, 2001, 64 (03) :7
[7]   Lag synchronization of Rossler system and Chua circuit via a scalar signal [J].
Li, CD ;
Liao, XF .
PHYSICS LETTERS A, 2004, 329 (4-5) :301-308
[8]   A special full-state hybrid projective synchronization in symmetrical chaotic systems [J].
Li, Rui-hong .
APPLIED MATHEMATICS AND COMPUTATION, 2008, 200 (01) :321-329
[9]   Synchronization control of chaotic neural networks with time-varying and distributed delays [J].
Li, Tao ;
Song, Ai-guo ;
Fei, Shu-min ;
Guo, Ying-qing .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (5-6) :2372-2384
[10]   Dynamical properties and chaos synchronization of a new chaotic complex nonlinear system [J].
Mahmoud, Gamal M. ;
Aly, Shahan A. ;
Al-Kashif, M. A. .
NONLINEAR DYNAMICS, 2008, 51 (1-2) :171-181