Fluorinated Carbon Nanotube/Nanofibrillated Cellulose Composite Film with Enhanced Toughness, Superior Thermal Conductivity, and Electrical Insulation

被引:168
作者
Wang, Xiongwei [1 ]
Wu, Peiyi [1 ,2 ]
机构
[1] Fudan Univ, Dept Macromol Sci, State Key Lab Mol Engn Polymers, Shanghai 200433, Peoples R China
[2] Donghua Univ, Coll Chem Chem Engn & Biotechnol, State Key Lab Modificat Chem Fibers & Polymer Mat, Ctr Adv Low Dimens Mat, Shanghai 201620, Peoples R China
关键词
fluorinated carbon nanotube; nanofibrillated celluloses; thermal conductivity; electrical insulation; composite film; BORON-NITRIDE NANOSHEETS; POLYMER COMPOSITES; HYBRID FILMS; NANOFIBRILLATED CELLULOSE; FUNCTIONALIZED GRAPHENE; MANAGEMENT APPLICATIONS; INTERFACE MATERIALS; NANOCOMPOSITES; NANOTUBES; BN;
D O I
10.1021/acsami.8b12565
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Recently, graphene and carbon nanotubes (CNTs) promise considerable application potentials in the highly efficient thermal management of high-power devices because of their superb thermal conductivity (TC). However, the high electrical conductivity hampers their use in some fields where electrical insulating components are always required. Herein, to coordinate the thermal and electrical conductivity of CNT, fluorinated CNT (FCNT) was first used as a thermally conductive filler to prepare composite film with nanofibrillated celluloses (NFCs) via facile vacuum-assisted filtration. The obtained composite film shows a well-organized layered structure of the building blocks along the planar direction. Moreover, the one-dimensional structure of NFCs and the strong interaction of NFCs and FCNTs ensure sufficient connection between FCNT themselves and the reduced interfacial thermal resistance of NFCs/FCNTs, so that efficient heat transfer pathways can be well reserved, leading to simultaneous accessibility of high in plane TC of 14.1 W m(-1) K-1 and favorable electrical insulation property at an FCNT content of 35 wt %. Despite such a high FCNT loading, the strong interaction between NFCs and FCNTs enables the composite film to possess enhanced toughness, reliable mechanical strength, and flexibility. Therefore, we think that these outstanding comprehensive properties guarantee that the prepared composite film has promising applications in heat dissipation of next-generation portable and collapsible electronic devices.
引用
收藏
页码:34311 / 34321
页数:11
相关论文
共 64 条
[1]   Cellulose nanofibril nanopapers and bioinspired nanocomposites: a review to understand the mechanical property space [J].
Benitez, A. J. ;
Walther, A. .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (31) :16003-16024
[2]   Thermal conductivity of polymer-based composites: Fundamentals and applications [J].
Chen, Hongyu ;
Ginzburg, Valeriy V. ;
Yang, Jian ;
Yang, Yunfeng ;
Liu, Wei ;
Huang, Yan ;
Du, Libo ;
Chen, Bin .
PROGRESS IN POLYMER SCIENCE, 2016, 59 :41-85
[3]   Vertically Aligned and Interconnected Boron Nitride Nanosheets for Advanced Flexible Nanocomposite Thermal Interface Materials [J].
Chen, Jin ;
Huang, Xingyi ;
Sun, Bin ;
Wang, Yuxin ;
Zhu, Yingke ;
Jiang, Pingkai .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (36) :30909-30917
[4]   Cellulose Nanofiber Supported 3D Interconnected BN Nanosheets for Epoxy Nanocomposites with Ultrahigh Thermal Management Capability [J].
Chen, Jin ;
Huang, Xingyi ;
Zhu, Yingke ;
Jiang, Pingkai .
ADVANCED FUNCTIONAL MATERIALS, 2017, 27 (05)
[5]   Review of Hydrogels and Aerogels Containing Nanocellulose [J].
De France, Kevin J. ;
Hoare, Todd ;
Cranston, Emily D. .
CHEMISTRY OF MATERIALS, 2017, 29 (11) :4609-4631
[6]   An ultrahigh thermal conductive graphene flexible paper [J].
Ding, Jiheng ;
Zhao, Hongran ;
Wang, Qiaolei ;
Dou, Huimin ;
Chen, Hao ;
Yu, Haibin .
NANOSCALE, 2017, 9 (43) :16871-16878
[7]   Two-Dimensional Fluorinated Graphene: Synthesis, Structures, Properties and Applications [J].
Feng, Wei ;
Long, Peng ;
Feng, Yiyu ;
Li, Yu .
ADVANCED SCIENCE, 2016, 3 (07)
[8]   Simultaneous improvement in the flame resistance and thermal conductivity of epoxy/Al2O3 composites by incorporating polymeric flame retardant-functionalized graphene [J].
Feng, Yuezhan ;
Hu, Ji ;
Xue, Yang ;
He, Chengen ;
Zhou, Xingping ;
Xie, Xiaolin ;
Ye, Yunsheng ;
Mai, Yiu-Wing .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (26) :13544-13556
[9]   Synthesis of chemically controllable and electrically tunable graphene films by simultaneously fluorinating and reducing graphene oxide [J].
Gong, Peiwei ;
Wang, Zhaofeng ;
Fan, Zengjie ;
Hong, Wei ;
Yang, Zhigang ;
Wang, Jinqing ;
Yang, Shengrong .
CARBON, 2014, 72 :176-184
[10]   Highly Conducting, Strong Nanocomposites Based on Nanocellulose-Assisted Aqueous Dispersions of Single-Wall Carbon Nanotubes [J].
Hamedi, Mahiar M. ;
Hajian, Alireza ;
Fall, Andreas B. ;
Hakansson, Karl ;
Salajkova, Michaela ;
Lundell, Fredrik ;
Wagberg, Lars ;
Berglund, Lars A. .
ACS NANO, 2014, 8 (03) :2467-2476