Selective silencing by RNAi of a dominant allele that causes amyotrophic lateral sclerosis

被引:133
作者
Ding, HL
Schwarz, DS
Keene, A
Affar, EB
Fenton, L
Xia, XA
Shi, Y
Zamore, PD
Xu, ZS
机构
[1] Univ Massachusetts, Sch Med, Dept Mol Pharmacol & Biochem, Worcester, MA 01605 USA
[2] Univ Massachusetts, Sch Med, Dept Cell Biol, Worcester, MA 01605 USA
[3] Univ Massachusetts, Sch Med, Program Neurosci, Worcester, MA 01605 USA
[4] Harvard Univ, Sch Med, Dept Pathol, Boston, MA 02115 USA
关键词
ALS; motor neuron disease; neurodegenerative disease; RNA interference; shRNA; siRNA; CU/ZN SUPEROXIDE-DISMUTASE; SHORT-INTERFERING RNAS; DOUBLE-STRANDED RNAS; MAMMALIAN-CELLS; GENE-EXPRESSION; IN-VITRO; MESSENGER-RNA; MOTOR-NEURONS; HAIRPIN RNAS; MICE;
D O I
10.1046/j.1474-9728.2003.00054.x
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
RNA interference (RNAi) can achieve sequence-selective inactivation of gene expression in a wide variety of eukaryotes by introducing double-stranded RNA corresponding to the target gene. Here we explore the potential of RNAi as a therapy for amyotrophic lateral sclerosis (ALS) caused by mutations in the Cu, Zn superoxide dismutase (SOD1) gene. Although the mutant SOD1 is toxic, the wild-type SOD1 performs important functions. Therefore, the ideal therapeutic strategy should be to selectively inhibit the mutant, but not the wild-type SOD1 expression. Because most SOD1 mutations are single nucleotide changes, to selectively silence the mutant requires single-nucleotide specificity. By coupling rational design of small interfering RNAs (siRNAs) with their validation in RNAi reactions in vitro and in vivo, we have identified siRNA sequences with this specificity. A similarly designed sequence, when expressed as small hairpin RNA (shRNA) under the control of an RNA polymerase III (pol III) promoter, retains the single-nucleotide specificity. Thus, RNAi is a promising therapy for AILS and other disorders caused by dominant, gain-of-function gene mutations.
引用
收藏
页码:209 / 217
页数:9
相关论文
共 42 条
[1]   In vitro photochemical cataract in mice lacking copper-zinc superoxide dismutase [J].
Behndig, A ;
Karlsson, K ;
Reaume, AG ;
Sentman, ML ;
Marklund, SL .
FREE RADICAL BIOLOGY AND MEDICINE, 2001, 31 (06) :738-744
[2]   Short 5′-phosphorylated double-stranded RNAs induce RNA interference in Drosophila [J].
Boutla, A ;
Delidakis, C ;
Livadaras, I ;
Tsagris, M ;
Tabler, M .
CURRENT BIOLOGY, 2001, 11 (22) :1776-1780
[3]   Stable suppression of tumorigenicity by virus-mediated RNA interference [J].
Brummelkamp, TR ;
Bernards, R ;
Agami, R .
CANCER CELL, 2002, 2 (03) :243-247
[4]   A system for stable expression of short interfering RNAs in mammalian cells [J].
Brummelkamp, TR ;
Bernards, R ;
Agami, R .
SCIENCE, 2002, 296 (5567) :550-553
[5]   Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems [J].
Caplen, NJ ;
Parrish, S ;
Imani, F ;
Fire, A ;
Morgan, RA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (17) :9742-9747
[6]   RNAi in human cells: Basic structural and functional features of small interfering RNA [J].
Chiu, YL ;
Rana, TM .
MOLECULAR CELL, 2002, 10 (03) :549-561
[7]   From Charcot to Lou Gehrig: Deciphering selective motor neuron death in ALS [J].
Cleveland, DW ;
Rothstein, JD .
NATURE REVIEWS NEUROSCIENCE, 2001, 2 (11) :806-819
[8]   Retrovirus-delivered siRNA [J].
Devroe E. ;
Silver P.A. .
BMC Biotechnology, 2 (1)
[9]   RNA interference is mediated by 21-and 22-nucleotide RNAs [J].
Elbashir, SM ;
Lendeckel, W ;
Tuschl, T .
GENES & DEVELOPMENT, 2001, 15 (02) :188-200
[10]   Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells [J].
Elbashir, SM ;
Harborth, J ;
Lendeckel, W ;
Yalcin, A ;
Weber, K ;
Tuschl, T .
NATURE, 2001, 411 (6836) :494-498