Odd edge coloring of graphs

被引:0
作者
Luzar, Borut [1 ,2 ]
Petrusevski, Mirko [3 ]
Skrekovski, Riste [1 ,2 ,4 ]
机构
[1] Fac Informat Studies, Novo Mesto 8000, Slovenia
[2] Inst Math Phys & Mech, Ljubljana 1000, Slovenia
[3] Fac Mech Engn, Dept Math & Informat, Skopje, Macedonia
[4] Univ Primorska, FAMNIT, Koper 6000, Slovenia
关键词
Edge coloring; odd subgraph; Shannon triangle;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An edge coloring of a graph G is said to be an odd edge coloring if for each vertex v of G and each color c, the vertex v uses the color c an odd number of times or does not use it at all. In [5], Pyber proved that 4 colors suffice for an odd edge coloring of any simple graph. Recently, some results on this type of colorings of (multi) graphs were successfully applied in solving a problem of facial parity edge coloring [3, 2]. In this paper we present additional results, namely we prove that 6 colors suffice for an odd edge coloring of any loopless connected (multi) graph, provide examples showing that this upper bound is sharp and characterize the family of loopless connected (multi) graphs for which the bound 6 is achieved. We also pose several open problems.
引用
收藏
页码:277 / 287
页数:11
相关论文
共 50 条
  • [21] The edge coloring of the Cartesian product of signed graphs
    Wen, Chao
    Sun, Qiang
    Cai, Hongyan
    Zhang, Chao
    [J]. DISCRETE MATHEMATICS, 2025, 348 (02)
  • [22] ACYCLIC EDGE-COLORING OF PLANAR GRAPHS
    Basavaraju, Manu
    Chandran, L. Sunil
    Cohen, Nathann
    Havet, Frederic
    Mueller, Tobias
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2011, 25 (02) : 463 - 478
  • [23] On total and edge coloring some Kneser graphs
    de Figueiredo, C. M. H.
    Patrao, C. S. R.
    Sasaki, D.
    Valencia-Pabon, M.
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2022, 44 (01) : 119 - 135
  • [24] Edge Coloring of Graphs with Applications in Coding Theory
    Raeisi, Ghaffar
    Gholami, Mohammad
    [J]. CHINA COMMUNICATIONS, 2021, 18 (01) : 181 - 195
  • [25] Edge-colorings of graphs avoiding complete graphs with a prescribed coloring
    Benevides, Fabricio S.
    Hoppen, Carlos
    Sampaio, Rudini M.
    [J]. DISCRETE MATHEMATICS, 2017, 340 (09) : 2143 - 2160
  • [26] Odd 4-edge-colorability of graphs
    Petrusevski, Mirko
    [J]. JOURNAL OF GRAPH THEORY, 2018, 87 (04) : 460 - 474
  • [27] New results on edge-coloring and total-coloring of split graphs
    Couto, Fernanda
    Ferraz, Diego Amaro
    Klein, Sulamita
    [J]. DISCRETE APPLIED MATHEMATICS, 2025, 360 : 297 - 306
  • [28] Edge-Coloring Vertex-Weighting of Graphs
    Shiu, Wai-Chee
    Lau, Gee-Choon
    Ng, Ho-Kuen
    [J]. IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2021, 16 (01): : 1 - 13
  • [29] LIST STAR EDGE-COLORING OF SUBCUBIC GRAPHS
    Kerdjoudj, Samia
    Kostochka, Alexandr
    Raspaud, Andre
    [J]. DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2018, 38 (04) : 1037 - 1054
  • [30] Edge-coloring of generalized lexicographic product of graphs
    Tian, Shuangliang
    Chen, Ping
    [J]. AIMS MATHEMATICS, 2024, 9 (06): : 15988 - 15995