Energy-Related Controllability of Signed Complex Networks With Laplacian Dynamics

被引:9
|
作者
She, Baike [1 ]
Mehta, Siddhartha [2 ]
Ton, Chau [3 ]
Kan, Zhen [4 ]
机构
[1] Univ Iowa, Dept Mech Engn, Iowa City, IA 52246 USA
[2] Univ Florida Res & Engn Educ Facil, Dept Ind & Syst Engn, Shalimar, FL 32579 USA
[3] Southwest Res Inst, San Antonio, TX 78238 USA
[4] Univ Sci & Technol China, Dept Automat, Hefei 230052, Peoples R China
关键词
Controllability; Laplace equations; Complex networks; Energy measurement; Eigenvalues and eigenfunctions; Control energy; network controllability; signed networks; STRUCTURAL CONTROLLABILITY; ACTUATOR PLACEMENT; SELECTION;
D O I
10.1109/TAC.2020.3017739
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article investigates energy-related controllability of complex networks. Specifically, our objective is to establish controllability characteristics on signed complex networks, where the network units interact via neighbor-based Laplacian feedback and the network admits positive and negative edges to capture cooperative and competitive interactions among these units. The network units can be classified into leaders and followers. This article focuses on characterizing the energy-related controllability in signed networks (i.e., the energy incurred by the leaders in the control of a network). To this end, controllability Gramian-based measures are exploited to quantify the difficulty of the control problem on signed networks in terms of the required control energy. Fundamental relationships between these measures and network topology are developed via graph Laplacian to characterize energy-related controllability. It is revealed that, for structurally unbalanced signed graphs, the energy-related controllability is closely related to the diagonal entries of the inverse of the graph Laplacian. It is also discovered that structurally balanced signed graphs and their corresponding unsigned graphs have the same energy-related controllability.
引用
收藏
页码:3325 / 3330
页数:6
相关论文
共 50 条
  • [31] CONTROLLABILITY ANALYSIS OF COMPLEX NETWORKS USING STATISTICAL RANDOM SAMPLING
    Ravandi, Babak
    Ansari, Forough S.
    Mili, Fatma
    ADVANCES IN COMPLEX SYSTEMS, 2019, 22 (7-8):
  • [32] Diversity of Structural Controllability of Complex Networks With Given Degree Sequence
    Ghasemi, Abdorasoul
    Posfai, Marton
    D'Souza, Raissa M.
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2020, 7 (04): : 2667 - 2679
  • [33] How Centrality of Driver Nodes Affects Controllability of Complex Networks
    Song, Guang-Hua
    Li, Xin-Feng
    Lu, Zhe-Ming
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2021, E104D (08) : 1340 - 1348
  • [34] Controllability and Data-Driven Identification of Bipartite Consensus on Nonlinear Signed Networks
    Hudoba de Badyn, Mathias
    Alemzadeh, Siavash
    Mesbahi, Mehran
    2017 IEEE 56TH ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2017,
  • [35] Topology Effects on Sparse Control of Complex Networks with Laplacian Dynamics
    Constantino, Pedro H.
    Tang, Wentao
    Daoutidis, Prodromos
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [36] Dynamics over Signed Networks
    Shi, Guodong
    Altafini, Claudio
    Baras, John S.
    SIAM REVIEW, 2019, 61 (02) : 229 - 257
  • [37] Controllability of Large-Scale Networks: The Control Energy Exponents
    Baggio, Giacomo
    Zampieri, Sandro
    IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, 2024, 11 (02): : 808 - 820
  • [38] Edge Augmentation With Controllability Constraints in Directed Laplacian Networks
    Abbas, Waseem
    Shabbir, Mudassir
    Yazicioglu, Yasin
    Koutsoukos, Xenofon
    IEEE CONTROL SYSTEMS LETTERS, 2022, 6 : 1106 - 1111
  • [39] Controllability Metrics, Limitations and Algorithms for Complex Networks
    Pasqualetti, Fabio
    Zampieri, Sandro
    Bullo, Francesco
    IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, 2014, 1 (01): : 40 - 52
  • [40] On the Role of Network Centrality in the Controllability of Complex Networks
    Bof, Nicoletta
    Baggio, Giacomo
    Zampieri, Sandro
    IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, 2017, 4 (03): : 643 - 653