Impact of coronary plaque morphology on the precision of computational fractional flow reserve derived from optical coherence tomography imaging

被引:13
作者
Zeng, Xiaoling [1 ]
Holck, Emil Nielsen [2 ]
Westra, Jelmer [2 ]
Hu, Fukang [3 ]
Huang, Jiayue [4 ]
Emori, Hiroki [5 ]
Kubo, Takashi [5 ]
Wijns, William [4 ]
Chen, Lianglong [1 ]
Tu, Shengxian [1 ,3 ]
机构
[1] Fujian Med Univ Union Hosp, Dept Cardiol, Fujian Heart Med Ctr, Fuzhou 350001, Peoples R China
[2] Aarhus Univ Hosp, Dept Cardiol, Aarhus, Denmark
[3] Shanghai Jiao Tong Univ, Biomed Instrument Inst, Sch Biomed Engn, Shanghai 200030, Peoples R China
[4] Natl Univ Ireland Galway, Lambe Inst Translat Med & Curam, Galway, Ireland
[5] Wakayama Med Univ, Dept Cardiovasc Med, Wakayama, Japan
基金
爱尔兰科学基金会;
关键词
Atherosclerosis; coronary plaque morphology; fractional flow reserve (FFR); optical coherence tomography (OCT); coronary physiology; ENDOTHELIAL DYSFUNCTION; DIAGNOSTIC-ACCURACY; INTERVENTION; ANGIOGRAPHY; ATHEROSCLEROSIS; VALIDATION; PATIENT; STRESS; BURDEN; RATIO;
D O I
10.21037/cdt-21-505
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: Computational fractional flow reserve (FFR) was recently developed to expand the use of physiology-guided percutaneous coronary intervention (PCI). Nevertheless, current methods do not account for plaque composition. It remains unknown whether the numerical precision of computational FFR is impacted by the plaque composition in the interrogated vessels. Methods: This study is an observational, retrospective, cross-sectional study. Patients who underwent both optical coherence tomography (OCT) and FFR prior to intervention between August 2011 and October 2018 at Wakayama Medical University Hospital were included. All frames from OCT pullbacks were analyzed using a deep learning algorithm to obtain coronary plaque morphology including thin-cap fibroatheroma (TCFA), lipidic plaque volume (LPV), fibrous plaque volume (FPV), and calcific plaque volume (CPV). The interrogated vessels were stratified into three subgroups: the overestimation group with the numerical difference between the optical flow ratio (OFR) and FFR >0.05, the reference group with the difference >=-0.05 and <= 0.05, and the underestimation group with the difference <-0.05. Results: In total 230 vessels with intermediate coronary artery stenosis from 193 patients were analyzed. The mean FFR was 0.82 +/- 0.10. Among them, 21, 179, and 30 vessels were in the overestimation, the reference, and the underestimation group, respectively. TCFA was higher in the underestimation group (60%) compared with reference (36.3%) and overestimation group (19%). Besides, it was not associated with numerical difference between OFR and FFR (NDOF) after multilevel linear regression. LPV was associated with NDOF as OFR underestimated FFR with -0.028 [95% confidence interval (CI): -0.047, -0.009] for every 100 mm(3) increase in LPV. Conclusions: High lipid burden underestimates FFR when OFR is used to assess the hemodynamic importance of intermediate coronary artery stenosis. TCFA, FPV, and CPV were not independent predictors of NDOI.
引用
收藏
页码:155 / 165
页数:11
相关论文
共 29 条
[1]   Lesion-Specific and Vessel-Related Determinants of Fractional Flow Reserve Beyond Coronary Artery Stenosis [J].
Ahmadi, Amir ;
Leipsic, Jonathon ;
Ovrehus, Kristian A. ;
Gaur, Sara ;
Bagiella, Emilia ;
Ko, Brian ;
Dey, Damini ;
LaRocca, Gina ;
Jensen, Jesper M. ;
Botker, Hans Erik ;
Achenbach, Stephan ;
De Bruyne, Bernard ;
Norgaard, Bjarne L. ;
Narula, Jagat .
JACC-CARDIOVASCULAR IMAGING, 2018, 11 (04) :521-530
[2]   Predictors of Rapid Plaque Progression An Optical Coherence Tomography Study [J].
Araki, Makoto ;
Yonetsu, Taishi ;
Kurihara, Osamu ;
Nakajima, Akihiro ;
Lee, Hang ;
Soeda, Tsunenari ;
Minami, Yoshiyasu ;
McNulty, Iris ;
Uemura, Shiro ;
Kakuta, Tsunekazu ;
Jang, Ik-Kyung .
JACC-CARDIOVASCULAR IMAGING, 2021, 14 (08) :1628-1638
[3]   Artificial intelligence and optical coherence tomography for the automatic characterisation of human atherosclerotic plaques [J].
Chu, Miao ;
Jia, Haibo ;
Gutierrez-Chico, Juan Luis ;
Maehara, Akiko ;
Ali, Ziad A. ;
Zeng, Xiaoling ;
He, Luping ;
Zhao, Chen ;
Matsumura, Mitsuaki ;
Wu, Peng ;
Zeng, Ming ;
Kubo, Takashi ;
Xu, Bo ;
Chen, Lianglong ;
Yu, Bo ;
Mintz, Gary S. ;
Wijns, William ;
Holm, Niels R. ;
Tu, Shengxian .
EUROINTERVENTION, 2021, 17 (01) :41-+
[4]   Novel Indices of Coronary Physiology Do We Need Alternatives to Fractional Flow Reserve? [J].
De Maria, Giovanni Luigi ;
Garcia-Garcia, Hector M. ;
Scarsini, Roberto ;
Hideo-Kajita, Alexandre ;
Gonzalo Lopez, Nieves ;
Leone, Antonio Maria ;
Sarno, Giovanna ;
Daemen, Joost ;
Shlofmitz, Evan ;
Jeremias, Allen ;
Tebaldi, Matteo ;
Bezerra, Hiram Grando ;
Tu, Shengxian ;
Lemos, Pedro A. ;
Ozaki, Yuichi ;
Dan, Kazuhiro ;
Collet, Carlos ;
Banning, Adrian P. ;
Barbato, Emanuele ;
Johnson, Nils P. ;
Waksman, Ron .
CIRCULATION-CARDIOVASCULAR INTERVENTIONS, 2020, 13 (04) :E008487
[5]   Effect of Plaque Burden and Morphology on Myocardial Blood Flow and Fractional Flow Reserve [J].
Driessen, Roel S. ;
Stuijfzand, Wijnand J. ;
Raijmakers, Pieter G. ;
Danad, Ibrahim ;
Min, James K. ;
Leipsic, Jonathon A. ;
Ahmadi, Amir ;
Narula, Jagat ;
van de Ven, Peter M. ;
Huisman, Marc C. ;
Lammertsma, Adriaan A. ;
van Rossum, Albert C. ;
van Royen, Niels ;
Knaapen, Paul .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2018, 71 (05) :499-509
[6]   Fractional Flow Reserve: An Updated Review [J].
Elgendy, Islam Y. ;
Conti, C. Richard ;
Bavry, Anthony A. .
CLINICAL CARDIOLOGY, 2014, 37 (06) :371-380
[7]   The Evolving Future of Instantaneous Wave-Free Ratio and Fractional Flow Reserve [J].
Gotberg, Matthias ;
Cook, Christopher M. ;
Sen, Sayan ;
Nijjer, Sukhjinder ;
Escaned, Javier ;
Davies, Justin E. .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2017, 70 (11) :1379-1402
[8]   Coronary microvascular obstruction: the new frontier in cardioprotection [J].
Heusch, Gerd .
BASIC RESEARCH IN CARDIOLOGY, 2019, 114 (06)
[9]   Diagnostic performance of intracoronary optical coherence tomography-based versus angiography-based fractional flow reserve for the evaluation of coronary lesions [J].
Huang, Jiayue ;
Emori, Hiroki ;
Ding, Daixin ;
Kubo, Takashi ;
Yu, Wei ;
Huang, Peng ;
Zhang, Su ;
Luis Gutierrez-Chico, Juan ;
Akasaka, Takashi ;
Wijns, William ;
Tu, Shengxian .
EUROINTERVENTION, 2020, 16 (07) :568-+
[10]   A novel method to assess coronary artery bifurcations by OCT: cut-plane analysis for side-branch ostial assessment from a main-vessel pullback [J].
Karanasos, Antonios ;
Tu, Shengxian ;
van Ditzhuijzen, Nienke S. ;
Ligthart, Jurgen M. R. ;
Witberg, Karen ;
Van Mieghem, Nicolas ;
van Geuns, Robert-Jan ;
de Jaegere, Peter ;
Zijlstra, Felix ;
Reiber, Johan H. C. ;
Regar, Evelyn .
EUROPEAN HEART JOURNAL-CARDIOVASCULAR IMAGING, 2015, 16 (02) :177-189