Interference between two indistinguishable electrons from independent sources

被引:260
作者
Neder, I.
Ofek, N.
Chung, Y.
Heiblum, M. [1 ]
Mahalu, D.
Umansky, V.
机构
[1] Weizmann Inst Sci, Braun Ctr Submicron Res, Dept Condensed Matter Phys, IL-76100 Rehovot, Israel
[2] Pusan Natl Univ, Dept Phys, Pusan 609735, South Korea
基金
新加坡国家研究基金会; 以色列科学基金会;
关键词
D O I
10.1038/nature05955
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Very much like the ubiquitous quantum interference of a single particle with itself(1), quantum interference of two independent, but indistinguishable, particles is also possible. For a single particle, the interference is between the amplitudes of the particle's wave-functions, whereas the interference between two particles is a direct result of quantum exchange statistics. Such interference is observed only in the joint probability of finding the particles in two separated detectors, after they were injected from two spatially separated and independent sources. Experimental realizations of two-particle interferometers have been proposed(2,3); in these proposals it was shown that such correlations are a direct signature of quantum entanglement(4) between the spatial degrees of freedom of the two particles ('orbital entanglement'), even though they do not interact with each other. In optics, experiments using indistinguishable pairs of photons encountered difficulties in generating pairs of independent photons and synchronizing their arrival times; thus they have concentrated on detecting bunching of photons (bosons) by coincidence measurements(5,6). Similar experiments with electrons are rather scarce. Cross-correlation measurements between partitioned currents, emanating from one source(7-10), yielded similar information to that obtained from auto-correlation (shot noise) measurements(11,12). The proposal of ref. 3 is an electronic analogue to the historical Hanbury Brown and Twiss experiment with classical light(13,14). It is based on the electronic Mach-Zehnder interferometer(15) that uses edge channels in the quantum Hall effect regime(16). Here we implement such an interferometer. We partitioned two independent and mutually incoherent electron beams into two trajectories, so that the combined four trajectories enclosed an Aharonov-Bohm flux. Although individual currents and their fluctuations (shot noise measured by auto-correlation) were found to be independent of the Aharonov-Bohm flux, the cross-correlation between current fluctuations at two opposite points across the device exhibited strong Aharonov-Bohm oscillations, suggesting orbital entanglement between the two electron beams.
引用
收藏
页码:333 / 337
页数:5
相关论文
共 23 条
[1]   SIGNIFICANCE OF ELECTROMAGNETIC POTENTIALS IN THE QUANTUM THEORY [J].
AHARONOV, Y ;
BOHM, D .
PHYSICAL REVIEW, 1959, 115 (03) :485-491
[2]  
Bell J. S., 1964, Physics Physique Fizika, V1, P195, DOI [10.1103/Physics-PhysiqueFizika.1.195, 10.1103/PhysicsPhysiqueFizika.1.195, DOI 10.1103/PHYSICSPHYSIQUEFIZIKA.1.195]
[3]  
Born M., 1999, PRINCIPLES OPTICS, P348
[4]   CORRELATION BETWEEN PHOTONS IN 2 COHERENT BEAMS OF LIGHT [J].
BROWN, RH ;
TWISS, RQ .
NATURE, 1956, 177 (4497) :27-29
[5]   Can quantum-mechanical description of physical reality be considered complete? [J].
Einstein, A ;
Podolsky, B ;
Rosen, N .
PHYSICAL REVIEW, 1935, 47 (10) :0777-0780
[6]  
Feynman R. P., 1965, Quantum Mechanics, VIII
[7]   Shot-noise in transport and beam experiments [J].
Gavish, U ;
Levinson, Y ;
Imry, Y .
PHYSICAL REVIEW LETTERS, 2001, 87 (21) :216807-1
[8]   QUANTIZED HALL CONDUCTANCE, CURRENT-CARRYING EDGE STATES, AND THE EXISTENCE OF EXTENDED STATES IN A TWO-DIMENSIONAL DISORDERED POTENTIAL [J].
HALPERIN, BI .
PHYSICAL REVIEW B, 1982, 25 (04) :2185-2190
[9]  
HANBURYBROWN R, 1954, PHILOS MAG, V45, P663
[10]   Quantum shot noise in edge channels [J].
Heiblum, M. .
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2006, 243 (14) :3604-3616