Degenerate seaweed to tilted dendrite transition and their growth dynamics in directional solidification of non-axially oriented crystals: a phase-field study

被引:52
作者
Xing, Hui [1 ]
Dong, Xianglei [1 ]
Wu, Hongjing [1 ]
Hao, Guanhua [1 ]
Wang, Jianyuan [1 ]
Chen, Changle [1 ]
Jin, Kexin [1 ]
机构
[1] Northwestern Polytech Univ, Key Lab Space Appl Phys & Chem, Xian 710129, Peoples R China
基金
中国国家自然科学基金;
关键词
MORPHOLOGY DIAGRAM; PATTERN SELECTION; ORIENTATION; COMPETITION; INTERFACE; STABILITY; EVOLUTION; FINGERS; GRAINS; MODELS;
D O I
10.1038/srep26625
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We report the results of a phase-field study of degenerate seaweed to tilted dendrite transition and their growth dynamics during directional solidification of a binary alloy. Morphological selection maps in the planes of (G, V-p) and (epsilon(4), V-p) show that lower pulling velocity, weaker anisotropic strength and higher thermal gradient can enhance the formation of the degenerate seaweed. The tip undercooling shows oscillations in seaweed growth, but it keeps at a constant value in dendritic growth. The M-S instability on the tips and the surface tension anisotropy of the solid-liquid interface are responsible for the formation of the degenerate seaweed. It is evidenced that the place where the interfacial instability occurs determines the morphological transition. The transient transition from degenerate seaweed to tilted dendrite shows that dendrites are dynamically preferred over seaweed. For the tilted dendritic arrays with a large tilted angle, primary spacing is investigated by comparing predicted results with the classical scaling power law, and the growth direction is found to be less sensitive to the pulling velocity and the primary spacing. Furthermore, the effect of the initial interface wavelength on the morphological transition is investigated to perform the history dependence of morphological selection.
引用
收藏
页数:21
相关论文
共 45 条
[1]   SYMMETRY-BROKEN DOUBLE FINGERS AND SEAWEED PATTERNS IN THIN-FILM DIRECTIONAL SOLIDIFICATION OF A NONFACETED CUBIC-CRYSTAL [J].
AKAMATSU, S ;
FAIVRE, G ;
IHLE, T .
PHYSICAL REVIEW E, 1995, 51 (05) :4751-4773
[2]   Orientation selection in solidification patterning [J].
Amoorezaei, Morteza ;
Gurevich, Sebastian ;
Provatas, Nikolas .
ACTA MATERIALIA, 2012, 60 (02) :657-663
[3]  
[Anonymous], 1947, Dokl. Akad. Nauk SSSR
[4]   Solidification microstructures and solid-state parallels: Recent developments, future directions [J].
Asta, M. ;
Beckermann, C. ;
Karma, A. ;
Kurz, W. ;
Napolitano, R. ;
Plapp, M. ;
Purdy, G. ;
Rappaz, M. ;
Trivedi, R. .
ACTA MATERIALIA, 2009, 57 (04) :941-971
[5]   Phase-field simulation of the columnar-to-equiaxed transition in alloy solidification [J].
Badillo, Arnoldo ;
Beckermann, Christoph .
ACTA MATERIALIA, 2006, 54 (08) :2015-2026
[6]   PREDICTIONS OF DENDRITIC GROWTH-RATES IN THE LINEARIZED SOLVABILITY THEORY [J].
BARBIERI, A ;
LANGER, JS .
PHYSICAL REVIEW A, 1989, 39 (10) :5314-5325
[7]   THEORY OF PATTERN SELECTION IN 3-DIMENSIONAL NONAXISYMMETRIC DENDRITIC GROWTH [J].
BENAMAR, M ;
BRENER, E .
PHYSICAL REVIEW LETTERS, 1993, 71 (04) :589-592
[8]   PATTERN SELECTION IN DENDRITIC SOLIDIFICATION [J].
BENJACOB, E ;
GOLDENFELD, N ;
KOTLIAR, BG ;
LANGER, JS .
PHYSICAL REVIEW LETTERS, 1984, 53 (22) :2110-2113
[9]   THE FORMATION OF PATTERNS IN NONEQUILIBRIUM GROWTH [J].
BENJACOB, E ;
GARIK, P .
NATURE, 1990, 343 (6258) :523-530
[10]   Structure formation and the morphology diagram of possible structures in two-dimensional diffusional growth [J].
Brener, E ;
MullerKrumbhaar, H ;
Temkin, D .
PHYSICAL REVIEW E, 1996, 54 (03) :2714-2722