HIAPER Pole-to-Pole Observations (HIPPO): fine-grained, global-scale measurements of climatically important atmospheric gases and aerosols

被引:306
作者
Wofsy, S. C. [1 ]
机构
[1] Harvard Univ, Cambridge, MA 02138 USA
来源
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2011年 / 369卷 / 1943期
基金
美国国家科学基金会; 美国海洋和大气管理局;
关键词
monitoring; polar; atmospheric science; PACIFIC EXPLORATORY MISSION; TROPICAL PACIFIC; PEM-TROPICS; CO2; AIR;
D O I
10.1098/rsta.2010.0313
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The HIAPER Pole-to-Pole Observations (HIPPO) programme has completed three of five planned aircraft transects spanning the Pacific from 85 degrees N to 67 degrees S, with vertical profiles every approximately 2.2 degrees of latitude. Measurements include greenhouse gases, long-lived tracers, reactive species, O-2/N-2 ratio, black carbon (BC), aerosols and CO2 isotopes. Our goals are to address the problem of determining surface emissions, transport strength and patterns, and removal rates of atmospheric trace gases and aerosols at global scales and to provide strong tests of satellite data and global models. HIPPO data show dense pollution and BC at high altitudes over the Arctic, imprints of large N2O sources from tropical lands and convective storms, sources of pollution and biogenic CH4 in the Arctic, and summertime uptake of CO2 and sources for O-2 at high southern latitudes. Global chemical signatures of atmospheric transport are imaged, showing remarkably sharp horizontal gradients at air mass boundaries, weak vertical gradients and inverted profiles (maxima aloft) in both hemispheres. These features challenge satellite algorithms, global models and inversion analyses to derive surface fluxes. HIPPO data can play a crucial role in identifying and resolving questions of global sources, sinks and transport of atmospheric gases and aerosols.
引用
收藏
页码:2073 / 2086
页数:14
相关论文
共 37 条
[1]  
[Anonymous], ATMOS MEAS TECH DISC
[2]   Chemical air mass differences near fronts [J].
Bethan, S ;
Vaughan, G ;
Gerbig, C ;
Volz-Thomas, A ;
Richer, H ;
Tiddeman, DA .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1998, 103 (D11) :13413-13434
[3]   Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation [J].
Bey, I ;
Jacob, DJ ;
Yantosca, RM ;
Logan, JA ;
Field, BD ;
Fiore, AM ;
Li, QB ;
Liu, HGY ;
Mickley, LJ ;
Schultz, MG .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2001, 106 (D19) :23073-23095
[4]   Satellite remote sounding of mid-tropospheric CO2 [J].
Chahine, M. T. ;
Chen, Luke ;
Dimotakis, Paul ;
Jiang, Xun ;
Li, Qinbin ;
Olsen, Edward T. ;
Pagano, Thomas ;
Randerson, James ;
Yung, Yuk L. .
GEOPHYSICAL RESEARCH LETTERS, 2008, 35 (17)
[5]   A case study of transpacific warm conveyor belt transport:: Influence of merging airstreams on trace gas import to North America -: art. no. D23S08 [J].
Cooper, OR ;
Forster, C ;
Parrish, D ;
Trainer, M ;
Dunlea, E ;
Ryerson, T ;
Hübler, G ;
Fehsenfeld, F ;
Nicks, D ;
Holloway, J ;
de Gouw, J ;
Warneke, C ;
Roberts, JM ;
Flocke, F ;
Moody, J .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2004, 109 (D23) :1-17
[6]  
Daube BC, 2002, J ATMOS OCEAN TECH, V19, P1532, DOI 10.1175/1520-0426(2002)019<1532:AHPFRA>2.0.CO
[7]  
2
[8]   PROJECT GAMETAG - AN OVERVIEW [J].
DAVIS, DD .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 1980, 85 (NC12) :7285-7292
[9]  
Draxler R, 2010, HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model Access via NOAA ARL Ready website, V25
[10]   Four-dimensional data assimilation of atmospheric CO2 using AIRS observations [J].
Engelen, Richard J. ;
Serrar, Soumia ;
Chevallier, Frederic .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2009, 114