An Enrichment Analysis for Cardiometabolic Traits Suggests Non-Random Assignment of Genes to microRNAs

被引:3
作者
Mustafa, Rima [1 ]
Ghanbari, Mohsen [2 ,3 ]
Evangelou, Marina [1 ,4 ,5 ]
Dehghan, Abbas [1 ,5 ]
机构
[1] Imperial Coll London, Dept Epidemiol & Biostat, St Marys Campus, London W2 1PG, England
[2] Erasmus Univ, Med Ctr, Dept Epidemiol, S Gravendijkwal 230, NL-3015CE Rotterdam, Netherlands
[3] Mashhad Univ Med Sci, Sch Med, Dept Genet, Mashhad 9138813944, Iran
[4] Imperial Coll London, Dept Math, South Kensington Campus, London SW7 2AZ, England
[5] Imperial Coll London, PHE Ctr Environm & Hlth, Dept Epidemiol & Biostat, MRC, St Marys Campus, London W2 1PG, England
关键词
microRNAs; genome-wide association studies; cardiometabolic; enrichment analysis; GENOME-WIDE ASSOCIATION; METABOLIC SYNDROME; MIRNA EXPRESSION; COMMON VARIANTS; PATHOPHYSIOLOGY; METAANALYSIS; INSIGHTS; RISK;
D O I
10.3390/ijms19113666
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
MicroRNAs (miRNAs) regulate the expression of the majority of genes. However, it is not known whether they regulate genes in random or are organized according to their function. To this end, we chose cardiometabolic disorders as an example and investigated whether genes associated with cardiometabolic disorders are regulated by a random set of miRNAs or a limited number of them. Single-nucleotide polymorphisms (SNPs) reaching genome-wide level significance were retrieved from most recent genome-wide association studies on cardiometabolic traits, which were cross-referenced with Ensembl to identify related genes and combined with miRNA target prediction databases (TargetScan, miRTarBase, or miRecords) to identify miRNAs that regulate them. We retrieved 520 SNPs, of which 355 were intragenic, corresponding to 304 genes. While we found a higher proportion of genes reported from all GWAS that were predicted targets for miRNAs in comparison to all protein-coding genes (75.1%), the proportion was even higher for cardiometabolic genes (80.6%). Enrichment analysis was performed within each database. We found that cardiometabolic genes were over-represented in target genes for 29 miRNAs (based on TargetScan) and 3 miRNAs (miR-181a, miR-302d and miR-372) (based on miRecords) after Benjamini-Hochberg correction for multiple testing. Our work provides evidence for non-random assignment of genes to miRNAs and supports the idea that miRNAs regulate sets of genes that are functionally related.
引用
收藏
页数:15
相关论文
共 51 条
[1]   Predicting effective microRNA target sites in mammalian mRNAs [J].
Agarwal, Vikram ;
Bell, George W. ;
Nam, Jin-Wu ;
Bartel, David P. .
ELIFE, 2015, 4
[2]   Ensembl 2017 [J].
Aken, Bronwen L. ;
Achuthan, Premanand ;
Akanni, Wasiu ;
Amode, M. Ridwan ;
Bernsdorff, Friederike ;
Bhai, Jyothish ;
Billis, Konstantinos ;
Carvalho-Silva, Denise ;
Cummins, Carla ;
Clapham, Peter ;
Gil, Laurent ;
Giron, Carlos Garcia ;
Gordon, Leo ;
Hourlier, Thibaut ;
Hunt, Sarah E. ;
Janacek, Sophie H. ;
Juettemann, Thomas ;
Keenan, Stephen ;
Laird, Matthew R. ;
Lavidas, Ilias ;
Maurel, Thomas ;
McLaren, William ;
Moore, Benjamin ;
Murphy, Daniel N. ;
Nag, Rishi ;
Newman, Victoria ;
Nuhn, Michael ;
Ong, Chuang Kee ;
Parker, Anne ;
Patricio, Mateus ;
Riat, Harpreet Singh ;
Sheppard, Daniel ;
Sparrow, Helen ;
Taylor, Kieron ;
Thormann, Anja ;
Vullo, Alessandro ;
Walts, Brandon ;
Wilder, Steven P. ;
Zadissa, Amonida ;
Kostadima, Myrto ;
Martin, Fergal J. ;
Muffato, Matthieu ;
Perry, Emily ;
Ruffier, Magali ;
Staines, Daniel M. ;
Trevanion, Stephen J. ;
Cunningham, Fiona ;
Yates, Andrew ;
Zerbino, Daniel R. ;
Flicek, Paul .
NUCLEIC ACIDS RESEARCH, 2017, 45 (D1) :D635-D642
[3]   Metabolic syndrome - a new world-wide definition. A consensus statement from the international diabetes federation [J].
Alberti, KGMM ;
Zimmet, P ;
Shaw, J .
DIABETIC MEDICINE, 2006, 23 (05) :469-480
[4]   A map of human genome variation from population-scale sequencing [J].
Altshuler, David ;
Durbin, Richard M. ;
Abecasis, Goncalo R. ;
Bentley, David R. ;
Chakravarti, Aravinda ;
Clark, Andrew G. ;
Collins, Francis S. ;
De la Vega, Francisco M. ;
Donnelly, Peter ;
Egholm, Michael ;
Flicek, Paul ;
Gabriel, Stacey B. ;
Gibbs, Richard A. ;
Knoppers, Bartha M. ;
Lander, Eric S. ;
Lehrach, Hans ;
Mardis, Elaine R. ;
McVean, Gil A. ;
Nickerson, DebbieA. ;
Peltonen, Leena ;
Schafer, Alan J. ;
Sherry, Stephen T. ;
Wang, Jun ;
Wilson, Richard K. ;
Gibbs, Richard A. ;
Deiros, David ;
Metzker, Mike ;
Muzny, Donna ;
Reid, Jeff ;
Wheeler, David ;
Wang, Jun ;
Li, Jingxiang ;
Jian, Min ;
Li, Guoqing ;
Li, Ruiqiang ;
Liang, Huiqing ;
Tian, Geng ;
Wang, Bo ;
Wang, Jian ;
Wang, Wei ;
Yang, Huanming ;
Zhang, Xiuqing ;
Zheng, Huisong ;
Lander, Eric S. ;
Altshuler, David L. ;
Ambrogio, Lauren ;
Bloom, Toby ;
Cibulskis, Kristian ;
Fennell, Tim J. ;
Gabriel, Stacey B. .
NATURE, 2010, 467 (7319) :1061-1073
[5]   A uniform system for microRNA annotation [J].
Ambros, V ;
Bartel, B ;
Bartel, DP ;
Burge, CB ;
Carrington, JC ;
Chen, XM ;
Dreyfuss, G ;
Eddy, SR ;
Griffiths-Jones, S ;
Marshall, M ;
Matzke, M ;
Ruvkun, G ;
Tuschl, T .
RNA, 2003, 9 (03) :277-279
[6]   miRPathDB: a new dictionary on microRNAs and target pathways [J].
Backes, Christina ;
Kehl, Tim ;
Stoeckel, Daniel ;
Fehlmann, Tobias ;
Schneider, Lara ;
Meese, Eckart ;
Lenhof, Hans-Peter ;
Keller, Andreas .
NUCLEIC ACIDS RESEARCH, 2017, 45 (D1) :D90-D96
[7]   miEAA: microRNA enrichment analysis and annotation [J].
Backes, Christina ;
Khaleeq, Qurratulain T. ;
Meese, Eckart ;
Keller, Andreas .
NUCLEIC ACIDS RESEARCH, 2016, 44 (W1) :W110-W116
[8]   MicroRNAs: Genomics, biogenesis, mechanism, and function (Reprinted from Cell, vol 116, pg 281-297, 2004) [J].
Bartel, David P. .
CELL, 2007, 131 (04) :11-29
[9]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[10]   An Expanded View of Complex Traits: From Polygenic to Omnigenic [J].
Boyle, Evan A. ;
Li, Yang I. ;
Pritchard, Jonathan K. .
CELL, 2017, 169 (07) :1177-1186