A New Three-Parameter Exponential Distribution with Variable Shapes for the Hazard Rate: Estimation and Applications

被引:46
作者
Afify, Ahmed Z. [1 ]
Mohamed, Osama Abdo [2 ]
机构
[1] Benha Univ, Dept Stat Math & Insurance, Banha 13511, Egypt
[2] Zagazig Univ, Dept Math, Fac Sci, Zagazig 44511, Egypt
关键词
Anderson-Darling estimation; Cramer-von Mises estimation; data analysis; exponential distribution; mean residual life; percentiles estimation; FAMILY;
D O I
10.3390/math8010135
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study a new flexible three-parameter exponential distribution called the extended odd Weibull exponential distribution, which can have constant, decreasing, increasing, bathtub, upside-down bathtub and reversed-J shaped hazard rates, and right-skewed, left-skewed, symmetrical, and reversed-J shaped densities. Some mathematical properties of the proposed distribution are derived. The model parameters are estimated via eight frequentist estimation methods called, the maximum likelihood estimators, least squares and weighted least-squares estimators, maximum product of spacing estimators, Cramer-von Mises estimators, percentiles estimators, and Anderson-Darling and right-tail Anderson-Darling estimators. Extensive simulations are conducted to compare the performance of these estimation methods for small and large samples. Four practical data sets from the fields of medicine, engineering, and reliability are analyzed, proving the usefulness and flexibility of the proposed distribution.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] A new useful three-parameter extension of the exponential distribution
    Lemonte, Artur J.
    Cordeiro, Gauss M.
    Moreno-Arenas, German
    STATISTICS, 2016, 50 (02) : 312 - 337
  • [2] A New Three-Parameter Inverse Weibull Distribution with Medical and Engineering Applications
    Alotaibi, Refah
    Okasha, Hassan
    Rezk, Hoda
    Nassar, Mazen
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2023, 135 (02): : 1255 - 1274
  • [3] On three-parameter exponential distribution: properties, Bayesian and non-Bayesian estimation based on complete and censored samples
    Afify, Ahmed Z.
    Suzuki, Adriano K.
    Zhang, Chunfang
    Nassar, Mazen
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2021, 50 (11) : 3799 - 3819
  • [4] A consistent method of estimation for the three-parameter Weibull distribution
    Nagatsuka, Hideki
    Kamakura, Toshinari
    Balakrishnan, N.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2013, 58 : 210 - 226
  • [5] A New Three-Parameter Discrete Distribution With Associated INAR(1) Process and Applications
    Eliwa, M. S.
    Altun, Emrah
    El-Dawoody, M.
    El-Morshedy, M.
    IEEE ACCESS, 2020, 8 : 91150 - 91162
  • [6] A new lifetime model with variable shapes for the hazard rate
    Afify, Ahmed Z.
    Cordeiro, Gauss M.
    Butt, Nadeem Shafique
    Ortega, Edwin M. M.
    Suzuki, Adriano K.
    BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2017, 31 (03) : 516 - 541
  • [7] A new one-parameter flexible family with variable failure rate shapes: Properties, inference, and real-life applications
    Mahran, Hisham
    Mansour, Mahmoud M.
    Abd Elrazik, Enayat M.
    Afify, Ahmed Z.
    AIMS MATHEMATICS, 2024, 9 (05): : 11910 - 11940
  • [8] On the Novel Three-parameter Nakagami-Rayleigh Distribution and Its Applications
    Abdullahi, Ibrahim
    Simmachan, Teerawat
    Phaphan, Wikanda
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2024, 45 (09) : 4001 - 4017
  • [9] The Marshall-Olkin additive Weibull distribution with variable shapes for the hazard rate
    Afify, Ahmed Z.
    Cordeiro, Gauss M.
    Yousof, Haitham M.
    Saboor, Abdus
    Ortega, Edwin M. M.
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2018, 47 (02): : 365 - 381
  • [10] PARAMETER ESTIMATION OF EXPONENTIAL DISTRIBUTION
    XU Haiyan FEI Heliang (Mathematics and Science College
    Journal of Systems Science & Complexity, 2005, (01) : 86 - 94