High-efficient thermoelectric materials: The case of orthorhombic IV-VI compounds

被引:228
作者
Ding, Guangqian
Gao, Guoying [1 ]
Yao, Kailun
机构
[1] Huazhong Univ Sci & Technol, Sch Phys, Wuhan 430074, Peoples R China
来源
SCIENTIFIC REPORTS | 2015年 / 5卷
基金
中国国家自然科学基金;
关键词
THERMAL-CONDUCTIVITY; SNS; PERFORMANCE; POWER; GESE;
D O I
10.1038/srep09567
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Improving the thermoelectric efficiency is one of the greatest challenges in materials science. The recent discovery of excellent thermoelectric performance in simple orthorhombic SnSe crystal offers new promise in this prospect [Zhao et al. Nature 508, 373 (2014)]. By calculating the thermoelectric properties of orthorhombic IV-VI compounds GeS, GeSe, SnS, and SnSe based on the first-principles combined with the Boltzmann transport theory, we show that the Seebeck coefficient, electrical conductivity, and thermal conductivity of orthorhombic SnSe are in agreement with the recent experiment. Importantly, GeS, GeSe, and SnS exhibit comparative thermoelectric performance compared to SnSe. Especially, the Seebeck coefficients of GeS, GeSe, and SnS are even larger than that of SnSe under the studied carrier concentration and temperature region. We also use the Cahill's model to estimate the lattice thermal conductivities at the room temperature. The large Seebeck coefficients, high power factors, and low thermal conductivities make these four orthorhombic IV-VI compounds promising candidates for high-efficient thermoelectric materials.
引用
收藏
页数:7
相关论文
共 34 条
[11]   High performance bulk thermoelectrics via a panoscopic approach [J].
He, Jiaqing ;
Kanatzidis, Mercouri G. ;
Dravid, Vinayak P. .
MATERIALS TODAY, 2013, 16 (05) :166-176
[12]   Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states [J].
Heremans, Joseph P. ;
Jovovic, Vladimir ;
Toberer, Eric S. ;
Saramat, Ali ;
Kurosaki, Ken ;
Charoenphakdee, Anek ;
Yamanaka, Shinsuke ;
Snyder, G. Jeffrey .
SCIENCE, 2008, 321 (5888) :554-557
[13]   Thermoelectric transport in Bi2Te3/Sb2Te3 superlattices [J].
Hinsche, N. F. ;
Yavorsky, B. Yu. ;
Gradhand, M. ;
Czerner, M. ;
Winkler, M. ;
Koenig, J. ;
Boettner, H. ;
Mertig, I. ;
Zahn, P. .
PHYSICAL REVIEW B, 2012, 86 (08)
[14]   Room-Temperature Pressure-Induced Nanostructural CuInTe2 Thermoelectric Material with Low Thermal Conductivity [J].
Kosuga, Atsuko ;
Umekage, Kouhei ;
Matsuzawa, Mie ;
Sakamoto, Yasuhiro ;
Yamada, Ikuya .
INORGANIC CHEMISTRY, 2014, 53 (13) :6844-6849
[15]   Simple compound manifests record-high thermoelectric performance [J].
Levi, Barbara Goss .
PHYSICS TODAY, 2014, 67 (06) :14-16
[16]   BoltzTraP. A code for calculating band-structure dependent quantities [J].
Madsen, Georg K. H. ;
Singh, David J. .
COMPUTER PHYSICS COMMUNICATIONS, 2006, 175 (01) :67-71
[17]  
Nariya BB, 2009, CHALCOGENIDE LETT, V6, P549
[18]   Temperature dependence of the electrical conductivity, Hall effect and thermoelectric power of SnS single crystals [J].
Nassary, MM .
JOURNAL OF ALLOYS AND COMPOUNDS, 2005, 398 (1-2) :21-25
[19]   First-principles determination of the soft mode in cubic ZrO2 [J].
Parlinski, K ;
Li, ZQ ;
Kawazoe, Y .
PHYSICAL REVIEW LETTERS, 1997, 78 (21) :4063-4066
[20]   Convergence of electronic bands for high performance bulk thermoelectrics [J].
Pei, Yanzhong ;
Shi, Xiaoya ;
LaLonde, Aaron ;
Wang, Heng ;
Chen, Lidong ;
Snyder, G. Jeffrey .
NATURE, 2011, 473 (7345) :66-69