High-efficient thermoelectric materials: The case of orthorhombic IV-VI compounds

被引:228
作者
Ding, Guangqian
Gao, Guoying [1 ]
Yao, Kailun
机构
[1] Huazhong Univ Sci & Technol, Sch Phys, Wuhan 430074, Peoples R China
来源
SCIENTIFIC REPORTS | 2015年 / 5卷
基金
中国国家自然科学基金;
关键词
THERMAL-CONDUCTIVITY; SNS; PERFORMANCE; POWER; GESE;
D O I
10.1038/srep09567
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Improving the thermoelectric efficiency is one of the greatest challenges in materials science. The recent discovery of excellent thermoelectric performance in simple orthorhombic SnSe crystal offers new promise in this prospect [Zhao et al. Nature 508, 373 (2014)]. By calculating the thermoelectric properties of orthorhombic IV-VI compounds GeS, GeSe, SnS, and SnSe based on the first-principles combined with the Boltzmann transport theory, we show that the Seebeck coefficient, electrical conductivity, and thermal conductivity of orthorhombic SnSe are in agreement with the recent experiment. Importantly, GeS, GeSe, and SnS exhibit comparative thermoelectric performance compared to SnSe. Especially, the Seebeck coefficients of GeS, GeSe, and SnS are even larger than that of SnSe under the studied carrier concentration and temperature region. We also use the Cahill's model to estimate the lattice thermal conductivities at the room temperature. The large Seebeck coefficients, high power factors, and low thermal conductivities make these four orthorhombic IV-VI compounds promising candidates for high-efficient thermoelectric materials.
引用
收藏
页数:7
相关论文
共 34 条
[1]   Grain structure effects on the lattice thermal conductivity of Ti-based half-Heusler alloys [J].
Bhattacharya, S ;
Tritt, TM ;
Xia, Y ;
Ponnambalam, V ;
Poon, SJ ;
Thadhani, N .
APPLIED PHYSICS LETTERS, 2002, 81 (01) :43-45
[2]   FULL-POTENTIAL, LINEARIZED AUGMENTED PLANE-WAVE PROGRAMS FOR CRYSTALLINE SYSTEMS [J].
BLAHA, P ;
SCHWARZ, K ;
SORANTIN, P ;
TRICKEY, SB .
COMPUTER PHYSICS COMMUNICATIONS, 1990, 59 (02) :399-415
[3]   LOWER LIMIT TO THE THERMAL-CONDUCTIVITY OF DISORDERED CRYSTALS [J].
CAHILL, DG ;
WATSON, SK ;
POHL, RO .
PHYSICAL REVIEW B, 1992, 46 (10) :6131-6140
[4]   Low thermal conductivity and triaxial phononic anisotropy of SnSe [J].
Carrete, Jesus ;
Mingo, Natalio ;
Curtarolo, Stefano .
APPLIED PHYSICS LETTERS, 2014, 105 (10)
[5]   Thermoelectric properties of p-type polycrystalline SnSe doped with Ag [J].
Chen, Cheng-Lung ;
Wang, Heng ;
Chen, Yang-Yuan ;
Day, Tristan ;
Snyder, G. Jeffrey .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (29) :11171-11176
[6]   Lower limit to the lattice thermal conductivity of nanostructured Bi2Te3-based materials [J].
Chiritescu, Catalin ;
Mortensen, Clay ;
Cahill, David G. ;
Johnson, David ;
Zschack, Paul .
JOURNAL OF APPLIED PHYSICS, 2009, 106 (07)
[7]   Thermoelectric performance of half-Heusler compounds MYSb (M = Ni, Pd, Pt) [J].
Ding, Guangqian ;
Gao, G. Y. ;
Yao, K. L. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2014, 47 (38)
[8]   Antiferromagnetic half-metals, gapless half-metals, and spin gapless semiconductors: The D03-type Heusler alloys [J].
Gao, G. Y. ;
Yao, Kai-Lun .
APPLIED PHYSICS LETTERS, 2013, 103 (23)
[9]   Preserving the half-metallicity at the surfaces of rocksalt CaN and SrN and the interfaces of CaN/InN and SrN/GaP: a density functional study [J].
Gao, G. Y. ;
Yao, K. L. ;
Li, Neng .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2011, 23 (07)
[10]   Minimum thermal conductivity in superlattices: A first-principles formalism [J].
Garg, Jivtesh ;
Chen, Gang .
PHYSICAL REVIEW B, 2013, 87 (14)