Collective media annotation using undirected random field models

被引:1
作者
Cooper, Matthew [1 ]
机构
[1] FX Palo Alto Lab, Palo Alto, CA 94301 USA
来源
ICSC 2007: INTERNATIONAL CONFERENCE ON SEMANTIC COMPUTING, PROCEEDINGS | 2007年
关键词
D O I
10.1109/ICSC.2007.57
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present methods for semantic annotation of multimedia data. The goal is to detect semantic attributes (also referred to as concepts) in clips of video via analysis of a single keyframe or set of frames. The proposed methods integrate high performance discriminative single concept detectors in a random field model for collective multiple concept detection. Furthermore, we describe a generic framework for semantic media classification capable of capturing arbitrary complex dependencies between the semantic concepts. Finally, we present initial experimental results comparing the proposed approach to existing methods.
引用
收藏
页码:337 / +
页数:2
相关论文
共 18 条
[1]   Using linear algebra for intelligent information retrieval [J].
Berry, MW ;
Dumais, ST ;
OBrien, GW .
SIAM REVIEW, 1995, 37 (04) :573-595
[2]  
Ghamrawi N., 2005, P 14 ACM INT C INF K, P195, DOI DOI 10.1145/1099554.1099591
[3]  
HOLLINK L, 2005, MULTIMEDIA 05, P479
[4]  
Jeon J., 2003, Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, P119, DOI DOI 10.1145/860435.860459
[5]  
KUMAR S, 2005, THESIS CARNEGIE MELO
[6]   Discriminative Random Fields [J].
Kumar, Sanjiv ;
Hebert, Martial .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2006, 68 (02) :179-201
[7]  
Lafferty J.D., 2001, MACHINE LEARNINGINTERNATIONAL WORKSHOP THEN CONFERENCE, P282, DOI DOI 10.1038/NPROT.2006
[8]  
Malouf R., 2002, COLING 02 6 C NATURA, V20, P1, DOI 10.3115/1118853.1118871
[9]  
NAPHADE M, 2006, IEEE MULTIMEDIA MAGA, V13
[10]  
OVER P, 2006, P TRECVID 2006 WORKS