Remote Sensing Image Fusion Based on Two-Stream Fusion Network

被引:19
作者
Liu, Xiangyu [1 ]
Wang, Yunhong [1 ]
Liu, Qingjie [1 ,2 ]
机构
[1] Beihang Univ, State Key Lab Virtual Real Technol & Syst, Beijing 100191, Peoples R China
[2] Beihang Univ, Sch Comp Sci & Engn, Beijing Key Lab Digital Media, Beijing 100191, Peoples R China
来源
MULTIMEDIA MODELING, MMM 2018, PT I | 2018年 / 10704卷
关键词
Image fusion; Pan-sharpening; Convolutional neural networks; Deep learning; Remote sensing; PAN-SHARPENING METHOD; MULTIRESOLUTION; RESOLUTION; QUALITY; IHS;
D O I
10.1007/978-3-319-73603-7_35
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Remote sensing image fusion (or pan-sharpening) aims at generating high resolution multi-spectral (MS) image from inputs of a high spatial resolution single band panchromatic (PAN) image and a low spatial resolution multi-spectral image. In this paper, a deep convolutional neural network with two-stream inputs respectively for PAN and MS images is proposed for remote sensing image pan-sharpening. Firstly the network extracts features from PAN and MS images, then it fuses them to form compact feature maps that can represent both spatial and spectral information of PAN and MS images, simultaneously. Finally, the desired high spatial resolution MS image is recovered from the fused features using an encoding-decoding scheme. Experiments on Quickbird satellite images demonstrate that the proposed method can fuse the PAN and MS image effectively.
引用
收藏
页码:428 / 439
页数:12
相关论文
共 35 条
[1]  
Abadi M., 2016, TENSORFLOW LARGESCAL
[2]   A Global Quality Measurement of Pan-Sharpened Multispectral Imagery [J].
Alparone, Luciano ;
Baronti, Stefano ;
Garzelli, Andrea ;
Nencini, Filippo .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2004, 1 (04) :313-317
[3]   A Regularized Model-Based Optimization Framework for Pan-Sharpening [J].
Aly, Hussein A. ;
Sharma, Gaurav .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2014, 23 (06) :2596-2608
[4]  
CHAVEZ PS, 1991, PHOTOGRAMM ENG REM S, V57, P295
[5]   Image Super-Resolution Using Deep Convolutional Networks [J].
Dong, Chao ;
Loy, Chen Change ;
He, Kaiming ;
Tang, Xiaoou .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (02) :295-307
[6]   Fusion of multispectral and panchromatic images using improved IHS and PCA mergers based on wavelet decomposition [J].
González-Audícana, M ;
Saleta, JL ;
Catalán, RG ;
García, R .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2004, 42 (06) :1291-1299
[7]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[8]   A New Pansharpening Method Based on Spatial and Spectral Sparsity Priors [J].
He, Xiyan ;
Condat, Laurent ;
Bioucas-Dias, Jose M. ;
Chanussot, Jocelyn ;
Xia, Junshi .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2014, 23 (09) :4160-4174
[9]  
Kim J, 2016, PROC CVPR IEEE, P1637, DOI [10.1109/CVPR.2016.182, 10.1109/CVPR.2016.181]
[10]  
Kingma D. P., P 3 INT C LEARN REPR