Genome-wide association analyses of common wheat (Triticum aestivum L.) germplasm identifies multiple loci for aluminium resistance

被引:45
|
作者
Raman, Harsh [1 ,2 ]
Stodart, Benjamin [1 ,2 ]
Ryan, Peter R. [3 ]
Delhaize, Emmanuel [3 ]
Emebiri, Livinus [1 ,2 ]
Raman, Rosy [1 ,2 ]
Coombes, Neil [1 ,2 ]
Milgate, Andrew [1 ,2 ]
机构
[1] Wagga Wagga Agr Inst, EH Graham Ctr Agr Innovat, Wagga Wagga, NSW 2650, Australia
[2] Charles Sturt Univ, Wagga Wagga, NSW, Australia
[3] CSIRO, Div Plant Ind, Canberra, ACT 2601, Australia
关键词
genetic diversity; wheat; germplasm; DArT; genetic structure; linkage disequilibrium; association mapping; QUANTITATIVE TRAIT LOCI; CHINESE SPRING WHEAT; HORDEUM-VULGARE L; TOLERANCE GENE; MOLECULAR DIVERSITY; FLOWERING TIME; ALMT1; GENE; MARKERS; POPULATION; BARLEY;
D O I
10.1139/G10-058
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Aluminium (Al3+) toxicity restricts productivity and profitability of wheat (Triticum aestivum L.) crops grown on acid soils worldwide. Continued gains will be obtained by identifying superior alleles and novel Al3+ resistance loci that can be incorporated into breeding programs. We used association mapping to identify genomic regions associated with Al3+ resistance using 1055 accessions of common wheat from different geographic regions of the world and 178 polymorphic diversity arrays technology (DArT) markers. Bayesian analyses based on genetic distance matrices classified these accessions into 12 subgroups. Genome-wide association analyses detected markers that were significantly associated with Al3+ resistance on chromosomes 1A, 1B, 2A, 2B, 2D, 3A, 3B, 4A, 4B, 4D, 5B, 6A, 6B, 7A, and 7B. Some of these genomic regions correspond to previously identified loci for Al3+ resistance, whereas others appear to be novel. Among the markers targeting TaALMT1 (the major Al3+-resistance gene located on chromosome 4D), those that detected alleles in the promoter explained most of the phenotypic variance for Al3+ resistance, which is consistent with this region controlling the level of TaALMT1 expression. These results demonstrate that genome-wide association mapping cannot only confirm known Al3+-resistance loci, such as those on chromsomes 4D and 4B, but they also highlight the utility of this technique in identifying novel resistance loci.
引用
收藏
页码:957 / 966
页数:10
相关论文
共 50 条
  • [1] Genome-wide association study identifies novel loci and candidate genes for rust resistance in wheat (Triticum aestivum L.)
    Khan, Hanif
    Krishnappa, Gopalareddy
    Kumar, Sudheer
    Devate, Narayana Bhat
    Rathan, Nagenahalli Dharmegowda
    Kumar, Satish
    Mishra, Chandra Nath
    Ram, Sewa
    Tiwari, Ratan
    Parkash, Om
    Ahlawat, Om Parkash
    Mamrutha, Harohalli Masthigowda
    Singh, Gyanendra Pratap
    Singh, Gyanendra
    BMC PLANT BIOLOGY, 2024, 24 (01):
  • [2] Genome-wide association analysis for stripe rust resistance in spring wheat(Triticum aestivum L.) germplasm
    Sher MUHAMMAD
    Muhammad SAJJAD
    Sultan Habibullah KHAN
    Muhammad SHAHID
    Muhammad ZUBAIR
    Faisal Saeed AWAN
    Azeem iqbal KHAN
    Muhammad Salman MUBARAK
    Ayesha TAHIR
    Muhammad UMER
    Rumana KEYANI
    Muhammad InamAFZAL
    Irfan MANZOOR
    Javed Iqbal WATTOO
    Aziz-ur REHMAN
    Journal of Integrative Agriculture, 2020, 19 (08) : 2035 - 2043
  • [3] Genome-wide association analysis for stripe rust resistance in spring wheat (Triticum aestivum L.) germplasm
    Muhammad, Sher
    Sajjad, Muhammad
    Khan, Sultan Habibullah
    Shahid, Muhammad
    Zubair, Muhammad
    Awan, Faisal Saeed
    Khan, Azeem Iqbal
    Mubarak, Muhammad Salman
    Tahir, Ayesha
    Umer, Muhammad
    Keyani, Rumana
    Afzal, Muhammad Inam
    Manzoor, Irfan
    Wattoo, Javed Iqbal
    Rehman, Aziz-ur
    JOURNAL OF INTEGRATIVE AGRICULTURE, 2020, 19 (08) : 2035 - 2043
  • [4] Genome-wide association study identifies loci and candidate genes for RVA parameters in wheat (Triticum aestivum L.)
    Ullah, Rehmat
    Yin, Mingyang
    Li, Sen
    Israr, Yasir
    Wu, Ziyan
    Wang, Xueping
    Yu, Jiazheng
    Li, Baoyun
    Ni, Zhongfu
    Liang, Rongqi
    FRONTIERS IN PLANT SCIENCE, 2024, 15
  • [5] Genome-wide association study reveals loci associated with seed longevity in common wheat (Triticum aestivum L.)
    Zuo, Jing Hong
    Chen, Feng Ying
    Li, Xiao Ying
    Xia, Xian Chun
    Cao, Hong
    Liu, Jin Dong
    Liu, Yong Xiu
    PLANT BREEDING, 2020, 139 (02) : 295 - 303
  • [6] Genome-wide association study and quantitative trait loci mapping of seed dormancy in common wheat (Triticum aestivum L.)
    Jinghong Zuo
    Chih-Ta Lin
    Hong Cao
    Fengying Chen
    Yongxiu Liu
    Jindong Liu
    Planta, 2019, 250 : 187 - 198
  • [7] Genome-wide association study and quantitative trait loci mapping of seed dormancy in common wheat (Triticum aestivum L.)
    Zuo, Jinghong
    Lin, Chih-Ta
    Cao, Hong
    Chen, Fengying
    Liu, Yongxiu
    Liu, Jindong
    PLANTA, 2019, 250 (01) : 187 - 198
  • [8] Genome-wide association study identifies loci and candidate genes for grain micronutrients and quality traits in wheat (Triticum aestivum L.)
    Rathan, Nagenahalli Dharmegowda
    Krishna, Hari
    Ellur, Ranjith Kumar
    Sehgal, Deepmala
    Govindan, Velu
    Ahlawat, Arvind Kumar
    Krishnappa, Gopalareddy
    Jaiswal, Jai Prakash
    Singh, Jang Bahadur
    Sv, Saiprasad
    Ambati, Divya
    Singh, Sumit Kumar
    Bajpai, Kriti
    Mahendru-Singh, Anju
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [9] Genome-wide association study identifies loci and candidate genes for grain micronutrients and quality traits in wheat (Triticum aestivum L.)
    Nagenahalli Dharmegowda Rathan
    Hari Krishna
    Ranjith Kumar Ellur
    Deepmala Sehgal
    Velu Govindan
    Arvind Kumar Ahlawat
    Gopalareddy Krishnappa
    Jai Prakash Jaiswal
    Jang Bahadur Singh
    Saiprasad SV
    Divya Ambati
    Sumit Kumar Singh
    Kriti Bajpai
    Anju Mahendru-Singh
    Scientific Reports, 12
  • [10] Genome-wide association mapping of black point reaction in common wheat (Triticum aestivum L.)
    Liu, Jindong
    He, Zhonghu
    Rasheed, Awais
    Wen, Weie
    Yan, Jun
    Zhang, Pingzhi
    Wan, Yingxiu
    Zhang, Yong
    Xie, Chaojie
    Xia, Xianchun
    BMC PLANT BIOLOGY, 2017, 17