One-parameter bifurcations in planar filippov systems

被引:475
作者
Kuznetsov, YA [1 ]
Rinaldi, S
Gragnani, A
机构
[1] Inst Math Problems Biol, Pushchino 142292, Moscow Region, Russia
[2] Univ Utrecht, Math Inst, NL-3584 CD Utrecht, Netherlands
[3] Politecn Milan, Dipartimento Elettron & Informat, I-20133 Milan, Italy
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2003年 / 13卷 / 08期
关键词
discontinuous piecewise smooth systems; Filippov systems; sliding bifurcations; continuation techniques;
D O I
10.1142/S0218127403007874
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give an overview of all codim 1 bifurcations in generic planar discontinuous piecewise smooth autonomous systems, here called Filippov systems. Bifurcations are defined using the classical approach of topological equivalence. This allows the development of a simple geometric criterion for classifying sliding bifurcations, i.e. bifurcations in which some sliding on the discontinuity boundary is critically involved. The full catalog of local and global bifurcations is given, together with explicit topological normal forms for the local ones. Moreover, for each bifurcation, a defining system is proposed that can be used to numerically compute the corresponding bifurcation curve with standard continuation techniques. A problem of exploitation of a predator-prey community is analyzed with the proposed methods.
引用
收藏
页码:2157 / 2188
页数:32
相关论文
共 22 条
[1]   COLLOCATION SOFTWARE FOR BOUNDARY-VALUE DIFFERENTIAL-ALGEBRAIC EQUATIONS [J].
ASCHER, UM ;
SPITERI, RJ .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1994, 15 (04) :938-952
[2]   On the origin and bifurcations of stick-slip oscillations [J].
Dankowicz, H ;
Nordmark, AB .
PHYSICA D-NONLINEAR PHENOMENA, 2000, 136 (3-4) :280-302
[3]   Local analysis of C-bifurcations in n-dimensional piecewise-smooth dynamical systems [J].
Di Bernardo, M ;
Feigin, MI ;
Hogan, SJ ;
Homer, ME .
CHAOS SOLITONS & FRACTALS, 1999, 10 (11) :1881-1908
[4]   Switchings, bifurcations, and chaos in DC/DC converters [J].
di Bernardo, M ;
Garofalo, F ;
Glielmo, L ;
Vasca, F .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 1998, 45 (02) :133-141
[5]   Self-oscillations and sliding in relay feedback systems: Symmetry and bifurcations [J].
Di Bernardo, M ;
Johansson, KH ;
Vasca, F .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2001, 11 (04) :1121-1140
[6]   Grazing and border-collision in piecewise-smooth systems: A unified analytical framework [J].
di Bernardo, M ;
Budd, CJ ;
Champneys, AR .
PHYSICAL REVIEW LETTERS, 2001, 86 (12) :2553-2556
[7]   A piecewise linear suspension bridge model: Nonlinear dynamics and orbit continuation [J].
Doole, SH ;
Hogan, SJ .
DYNAMICS AND STABILITY OF SYSTEMS, 1996, 11 (01) :19-47
[8]  
Filippov A. F., 1964, Trans. Amer. Math. Soc. Ser, V2, P199, DOI DOI 10.1090/TRANS2/042/13
[9]   Bifurcation sets of continuous piecewise linear systems with two zones [J].
Freire, E ;
Ponce, E ;
Rodrigo, F ;
Torres, F .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1998, 8 (11) :2073-2097
[10]  
Gatto M., 1973, International Journal of Systems Science, V4, P809, DOI 10.1080/00207727308920060