Cortical mechanism for the visual guidance of hand grasping movements in the monkey - A reversible inactivation study

被引:302
作者
Fogassi, L [1 ]
Gallese, V [1 ]
Buccino, G [1 ]
Craighero, L [1 ]
Fadiga, L [1 ]
Rizzolatti, G [1 ]
机构
[1] Univ Parma, Ist Fisiol Umana, I-43100 Parma, Italy
关键词
premotor cortex; area F5; muscimol; hand grasping; monkey;
D O I
10.1093/brain/124.3.571
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Picking up an object requires two basic motor operations: reaching and grasping. Neurophysiological studies in monkeys have suggested that the visuomotor transformations necessary for these two operations are carried out by separate parietofrontal circuits and that, for grasping, a key role is played by a specific sector of the ventral premotor cortex: area F5, The aim of the present study was to test the validity of this hypothesis by reversibly inactivating area F5 in monkeys trained to grasp objects of different shape, size and orientation. In separate sessions, the hand field of the primary motor cortex (area F1 or area 4) was also reversibly inactivated. The results showed that after inactivation of area F5 buried in the bank of the arcuate sulcus (the F5 sector where visuomotor neurones responding to object presentation are located), the hand shaping preceding grasping was markedly impaired and the hand posture was not appropriate for the object size and shape. The monkeys were eventually able to grasp the objects, but only after a series of corrections made under tactile control. With small inactivations the deficits concerned the contralesional hand, with larger inactivations the ipsilateral hand as well. In addition, there were signs of peripersonal neglect in the hemispace contralateral to the inactivation site. Following inactivation of area F5 lying on the cortical convexity (the F5 sector where visuomotor neurones responding to action observation, 'mirror neurones', are found) only a motor slowing was observed, the hand shaping being preserved. The inactivation of the hand field of area F1 produced a severe paralysis of contralateral finger movements with hypotonia, The results of this study indicate the crucial role of the ventral premotor cortex in visuomotor transformations for grasping movements. More generally, they provide strong support for the notion that distal and proximal movement organization relies upon distinct cortical circuits. Clinical data on distal movement deficits in humans are reexamined in the light of the present findings.
引用
收藏
页码:571 / 586
页数:16
相关论文
共 81 条
[1]   Human anterior intraparietal area subserves prehension - A combined lesion and functional MRI activation study [J].
Binkofski, F ;
Dohle, C ;
Posse, S ;
Stephan, KM ;
Hefter, H ;
Seitz, RJ ;
Freund, HJ .
NEUROLOGY, 1998, 50 (05) :1253-1259
[2]   A fronto-parietal circuit for object manipulation in man: evidence from an fMRI-study [J].
Binkofski, F ;
Buccino, G ;
Posse, S ;
Seitz, RJ ;
Rizzolatti, G ;
Freund, HJ .
EUROPEAN JOURNAL OF NEUROSCIENCE, 1999, 11 (09) :3276-3286
[3]   The effects of muscimol inactivation of small regions of motor and somatosensory cortex on independent finger movements and force control in the precision grip [J].
Brochier, T ;
Boudreau, MJ ;
Paré, M ;
Smith, AM .
EXPERIMENTAL BRAIN RESEARCH, 1999, 128 (1-2) :31-40
[4]   PREHENSION MOVEMENTS DIRECTED TO APPROACHING OBJECTS - INFLUENCE OF STIMULUS VELOCITY ON THE TRANSPORT AND THE GRASP COMPONENTS [J].
CHIEFFI, S ;
FOGASSI, L ;
GALLESE, V ;
GENTILUCCI, M .
NEUROPSYCHOLOGIA, 1992, 30 (10) :877-897
[5]  
CHIEFFI S, 1993, EXP BRAIN RES, V94, P471
[6]   MOTOR CONTROL OF VOLUNTARY ARM MOVEMENTS - KINEMATIC AND MODELING STUDY [J].
CORRADINI, ML ;
GENTILUCCI, M ;
LEO, T ;
RIZZOLATTI, G .
BIOLOGICAL CYBERNETICS, 1992, 67 (04) :347-360
[7]  
De Renzi E., 1982, DISORDERS SPACE EXPL
[8]   EFFECTS OF REVERSIBLE LESIONS AND STIMULATION OF OLIVOCEREBELLAR SYSTEM ON VESTIBULOOCULAR REFLEX PLASTICITY [J].
DEMER, JL ;
ROBINSON, DA .
JOURNAL OF NEUROPHYSIOLOGY, 1982, 47 (06) :1084-1107
[9]  
DUM RP, 1991, J NEUROSCI, V11, P667
[10]  
FADIGA LGV, 1997, PARIETAL LOBE CONTRI, P255