Enhanced Transfer Learning for Autonomous Driving with Systematic Accident Simulation

被引:16
作者
Akhauri, Shivam [1 ]
Zheng, Laura Y. [1 ]
Lin, Ming C. [1 ]
机构
[1] Univ Maryland, College Pk, MD 20742 USA
来源
2020 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS) | 2020年
关键词
D O I
10.1109/IROS45743.2020.9341538
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Simulation data can be utilized to extend real-world driving data in order to cover edge cases, such as vehicle accidents. The importance of handling edge cases can be observed in the high societal costs in handling car accidents, as well as potential dangers to human drivers. In order to cover a wide and diverse range of all edge cases, we systemically parameterize and simulate the most common accident scenarios. By applying this data to autonomous driving models, we show that transfer learning on simulated data sets provide better generalization and collision avoidance, as compared to random initialization methods. Our results illustrate that information from a model trained on simulated data can be inferred to a model trained on real-world data, indicating the potential influence of simulation data in real world models and advancements in handling of anomalous driving scenarios.
引用
收藏
页码:5986 / 5993
页数:8
相关论文
共 17 条
[1]  
Bento A., 2017, 23340 NAT BUR EC RES
[2]  
Bojarski Mariusz, 2016, arXiv
[3]  
Dosovitskiy A, 2017, PR MACH LEARN RES, V78
[4]  
Forbes Gerald J., 2012, FHWA-SA-12-004
[5]   Image-to-Image Translation with Conditional Adversarial Networks [J].
Isola, Phillip ;
Zhu, Jun-Yan ;
Zhou, Tinghui ;
Efros, Alexei A. .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :5967-5976
[6]  
Iuzzolino Michael L., 2019, ABS190105599 CORR
[7]   AADS: Augmented autonomous driving simulation using data-driven algorithms [J].
Li, W. ;
Pan, C. W. ;
Zhang, R. ;
Ren, J. P. ;
Ma, Y. X. ;
Fang, J. ;
Yan, F. L. ;
Geng, Q. C. ;
Huang, X. Y. ;
Gong, H. J. ;
Xu, W. W. ;
Wang, G. P. ;
Manocha, D. ;
Yang, R. G. .
SCIENCE ROBOTICS, 2019, 4 (28)
[8]  
Liu Ming-Yu, 2017, NIPS, DOI DOI 10.48550/ARXIV.1703.00848
[9]  
Long J, 2015, PROC CVPR IEEE, P3431, DOI 10.1109/CVPR.2015.7298965
[10]  
Lyu Yecheng, 2018, ARXIV180804450