MEAN CURVATURE FLOW OF PINCHED SUBMANIFOLDS TO SPHERES

被引:3
作者
Andrews, Ben [1 ]
Baker, Charles [1 ]
机构
[1] Australian Natl Univ, Inst Math Sci, Canberra, ACT 0200, Australia
基金
澳大利亚研究理事会;
关键词
ARBITRARY CODIMENSION; LAGRANGIAN SUBMANIFOLDS; MINIMAL SUBMANIFOLDS; CONVEX SURFACES; SPACE-FORMS; HYPERSURFACES; SINGULARITIES; MAPS; CONVERGENCE; MANIFOLDS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider compact submanifolds of dimension n >= 2 in R(n+k), with nonzero mean curvature vector everywhere, and such that the full norm of the second fundamental form is bounded by a fixed multiple (depending on n) of the length of the mean curvature vector at every point. We prove that the mean curvature flow deforms such a submanifold to a point in finite time, and that the solution is asymptotic to a shrinking sphere in some (n + 1)-dimensional affine subspace of R(n+k).
引用
收藏
页码:357 / 395
页数:39
相关论文
共 41 条
[1]   HYPERSURFACES WITH CONSTANT MEAN-CURVATURE IN SPHERES [J].
ALENCAR, H ;
DOCARMO, M .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 120 (04) :1223-1229
[2]  
Ambrosio L, 1996, J DIFFER GEOM, V43, P693
[3]  
Ambrosio L., 1997, ANN SCUOLA NORM SU S, V25, P27
[4]   A result on motion by mean curvature in arbitrary codimension [J].
Bellettini, G ;
Novaga, M .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 1999, 11 (03) :205-220
[5]  
Böhm C, 2008, ANN MATH, V167, P1079
[6]  
BRAKKE KA, 1978, MATH NOTES, V20
[7]  
Brendle S, 2009, J AM MATH SOC, V22, P287
[8]   A GENERAL CONVERGENCE RESULT FOR THE RICCI FLOW IN HIGHER DIMENSIONS [J].
Brendle, Simon .
DUKE MATHEMATICAL JOURNAL, 2008, 145 (03) :585-601
[9]   SOME PINCHING AND CLASSIFICATION-THEOREMS FOR MINIMAL SUBMANIFOLDS [J].
CHEN, BY .
ARCHIV DER MATHEMATIK, 1993, 60 (06) :568-578
[10]   SCALAR CURVATURE, INEQUALITY AND SUBMANIFOLD [J].
CHEN, BY ;
OKUMURA, M .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 38 (03) :605-608