Research on traffic sign detection algorithm based on deep learning

被引:4
|
作者
Wang, Quan [1 ]
Fu, Weiping [1 ]
机构
[1] Xian Univ Technol, Xian, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
adaptive detection; deep learning; image processing; traffic sign detection; RECOGNITION;
D O I
10.1002/cpe.4675
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Due to the respective interests among the main bodies of the supply chain, it is necessary to introduce some mechanisms to coordinate the problem of decrease of detection rate caused by the interconnection of closed-loop traffic signs. This paper proposes a traffic sign detection algorithm based on deep learning. It uses the red, green, and blue (RGB) normalization-based color detection algorithm and regional feature decision criteria to automatically identify the multi-sign interconnection candidate regions and perform edge smoothing and contour tracking for the extracted target regions. It uses deep learner based on global and local curvature characteristics to make traffic sign detection on the extracted contours, and, according to judgment criteria of convexity and concavity of corners as well as matching conditions of detection point pairs, extracts the detection point pairs between the signs from the corners. It seeks the detection lines between detection point pairs and realizes the final detection of signs. The experimental results verify the effectiveness of the proposed algorithm. Compared with the existing sign detection algorithm based on watershed transformation and the improved adaptive detection algorithm, it overcomes the sign over-detection problem and improves the overall performances of the sign detection.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Research on Traffic Sign Object Detection Algorithm Based on Deep Learning
    Sun, Mingyang
    Tian, Ying
    ENGINEERING LETTERS, 2024, 32 (08) : 1562 - 1568
  • [2] Traffic Sign Detection and Recognition Based on Deep Learning
    Zhang, H.
    Zhao, J.
    ENGINEERING LETTERS, 2022, 30 (02) : 666 - 673
  • [3] PSG-Yolov5: A Paradigm for Traffic Sign Detection and Recognition Algorithm Based on Deep Learning
    Hu, Jie
    Wang, Zhanbin
    Chang, Minjie
    Xie, Lihao
    Xu, Wencai
    Chen, Nan
    SYMMETRY-BASEL, 2022, 14 (11):
  • [4] Deep Learning based Traffic Direction Sign Detection and Determining Driving Style
    Karaduman, Mucahit
    Eren, Haluk
    2017 INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ENGINEERING (UBMK), 2017, : 1046 - 1050
  • [5] UCN-YOLOv5: Traffic Sign Object Detection Algorithm Based on Deep Learning
    Liu, Peilin
    Xie, Zhaoyang
    Li, Taijun
    IEEE ACCESS, 2023, 11 : 110039 - 110050
  • [6] Research on traffic sign detection algorithm based on improved SSD in complex environments
    Zhang, Hong
    Zhang, Wei
    Wang, Wanqi
    Li, Xinlong
    Zhang, Anyu
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (11)
  • [7] Evaluation Method of Deep Learning-Based Embedded Systems for Traffic Sign Detection
    Lopez-Montiel, Miguel
    Orozco-Rosas, Ulises
    Sanchez-Adame, Moises
    Picos, Kenia
    Ross, Oscar Humberto Montiel
    IEEE ACCESS, 2021, 9 : 101217 - 101238
  • [8] Research on Traffic Sign Detection and Recognition System Using Deep Ensemble Learning
    Wang, Lung-Jen
    Suwattanapunkul, Taweelap
    Thalauy, Jarinya
    Jansengrat, Parinya
    2024 6TH INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATION AND THE INTERNET, ICCCI 2024, 2024, : 61 - 66
  • [9] A Deep Learning Based Traffic Sign Detection for Intelligent Transportation Systems
    Le, Bao-Long
    Lam, Gia-Huy
    Nguyen, Xuan-Vinh
    Nguyen, The-Manh
    Duong, Quoc-Loc
    Tran, Quang Dieu
    Do, Trong-Hop
    Dao, Nhu-Ngoc
    COMPUTATIONAL DATA AND SOCIAL NETWORKS, CSONET 2021, 2021, 13116 : 129 - 137
  • [10] Evaluation of focal loss based deep neural networks for traffic sign detection
    Kamboj, Deepika
    Vashisth, Sharda
    Saurav, Sumeet
    INTERNATIONAL JOURNAL OF IMAGE AND DATA FUSION, 2023, 14 (02) : 122 - 144