Fractional and operational calculus with generalized fractional derivative operators and Mittag-Leffler type functions

被引:210
|
作者
Tomovski, Zivorad [2 ]
Hilfer, Rudolf [3 ]
Srivastava, H. M. [1 ]
机构
[1] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3R4, Canada
[2] Univ St Cyril & Methudius, Fac Nat Sci & Math, Inst Math, MK-91000 Skopje, Macedonia
[3] Univ Stuttgart, ICP, D-70569 Stuttgart, Germany
关键词
Riemann-Liouville fractional derivative operator; generalized Mittag-Leffler function; Hardy-type inequalities; Laplace transform method; Volterra differintegral equations; fractional differential equations; fractional kinetic equations; Lebesgue integrable functions; Fox-Wright hypergeometric functions; EQUATIONS;
D O I
10.1080/10652461003675737
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study a certain family of generalized Riemann-Liouville fractional derivative operators [image omitted] of order and type , which were introduced and investigated in several earlier works [R. Hilfer (ed.), Applications of Fractional Calculus in Physics, World Scientific Publishing Company, Singapore, New Jersey, London and Hong Kong, 2000; R. Hilfer, Fractional time evolution, in Applications of Fractional Calculus in Physics, R. Hilfer, ed., World Scientific Publishing Company, Singapore, New Jersey, London and Hong Kong, 2000, pp. 87-130; R. Hilfer, Experimental evidence for fractional time evolution in glass forming materials, J. Chem. Phys. 284 (2002), pp. 399-408; R. Hilfer, Threefold introduction to fractional derivatives, in Anomalous Transport: Foundations and Applications, R. Klages, G. Radons, and I.M. Sokolov, eds., Wiley-VCH Verlag, Weinheim, 2008, pp. 17-73; R. Hilfer and L. Anton, Fractional master equations and fractal time random walks, Phys. Rev. E 51 (1995), pp. R848-R851; R. Hilfer, Y. Luchko, and Z. Tomovski, Operational method for solution of the fractional differential equations with the generalized Riemann-Liouville fractional derivatives, Fract. Calc. Appl. Anal. 12 (2009), pp. 299-318; F. Mainardi and R. Gorenflo, Time-fractional derivatives in relaxation processes: A tutorial survey, Fract. Calc. Appl. Anal. 10 (2007), pp. 269-308; T. Sandev and Z. Tomovski, General time fractional wave equation for a vibrating string, J. Phys. A Math. Theor. 43 (2010), 055204; H.M. Srivastava and Z. Tomovski, Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernel, Appl. Math. Comput. 211 (2009), pp. 198-210]. In particular, we derive various compositional properties, which are associated with Mittag-Leffler functions and Hardy-type inequalities for the generalized fractional derivative operator [image omitted]. Furthermore, by using the Laplace transformation methods, we provide solutions of many different classes of fractional differential equations with constant and variable coefficients and some general Volterra-type differintegral equations in the space of Lebesgue integrable functions. Particular cases of these general solutions and a brief discussion about some recently investigated fractional kinetic equations are also given.
引用
收藏
页码:797 / 814
页数:18
相关论文
共 50 条
  • [21] Fractional differential equations for the generalized Mittag-Leffler function
    Agarwal, Praveen
    Al-Mdallal, Qasem
    Cho, Yeol Je
    Jain, Shilpi
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [22] A naturally emerging bivariate Mittag-Leffler function and associated fractional-calculus operators
    Fernandez, Arran
    Kurt, Cemaliye
    Ozarslan, Mehmet Ali
    COMPUTATIONAL & APPLIED MATHEMATICS, 2020, 39 (03)
  • [23] Computing the Matrix Mittag-Leffler Function with Applications to Fractional Calculus
    Garrappa, Roberto
    Popolizio, Marina
    JOURNAL OF SCIENTIFIC COMPUTING, 2018, 77 (01) : 129 - 153
  • [24] Fractional differential equations for the generalized Mittag-Leffler function
    Praveen Agarwal
    Qasem Al-Mdallal
    Yeol Je Cho
    Shilpi Jain
    Advances in Difference Equations, 2018
  • [25] Constructive fractional models through Mittag-Leffler functions
    Monteiro, Noemi Zeraick
    dos Santos, Rodrigo Weber
    Mazorche, Sandro Rodrigues
    COMPUTATIONAL & APPLIED MATHEMATICS, 2024, 43 (04)
  • [26] A Class of Extended Mittag-Leffler Functions and Their Properties Related to Integral Transforms and Fractional Calculus
    Parmar, Rakesh K.
    MATHEMATICS, 2015, 3 (04): : 1069 - 1082
  • [27] Study of evolution problem under Mittag-Leffler type fractional order derivative
    Shah, Kamal
    Sher, Muhammad
    Abdeljawad, Thabet
    ALEXANDRIA ENGINEERING JOURNAL, 2020, 59 (05) : 3945 - 3951
  • [28] OPTIMALITY CONDITIONS INVOLVING THE MITTAG-LEFFLER TEMPERED FRACTIONAL DERIVATIVE
    Almeida, Ricardo
    Luisa Morgado, M.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2022, 15 (03): : 519 - 534
  • [29] CERTAIN RELATION OF GENERALIZED FRACTIONAL CALCULUS ASSOCIATED WITH THE PRODUCT OF GENERALIZED MITTAG-LEFFLER FUNCTION AND SRIVASTAVA POLYNOMIALS
    Shaktawat, Bhupender Singh
    Lal, Madan
    Gupta, Rajeev Kumar
    JOURNAL OF RAJASTHAN ACADEMY OF PHYSICAL SCIENCES, 2019, 18 (1-2): : 1 - 14
  • [30] Generalized Mittag-Leffler quadrature methods for fractional differential equations
    Li, Yu
    Cao, Yang
    Fan, Yan
    COMPUTATIONAL & APPLIED MATHEMATICS, 2020, 39 (03)