Splitting and pinching for convex sets

被引:0
作者
Kohlmann, P [1 ]
机构
[1] UNIV DORTMUND,INST MATH,D-44221 DORTMUND,GERMANY
关键词
convex sets; orthogonal disc cylinders; splitting property;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider noncompact, closed and convex sets with nonvoid interior in Euclidean space. It is shown that if such a set has one curvature measure sufficiently close to the boundary measure, then it is congruent to a product of a vector space and a compact convex body. Related stability and characterization theorems for orthogonal disc cylinders are proved. Our arguments are based on the Steiner-Schwarz symmetrization processes and generalized Minkowski integral formulas.
引用
收藏
页码:125 / 143
页数:19
相关论文
共 18 条
[1]  
[Anonymous], ENCY MATH ITS APPL
[2]  
Federer H., 1959, Trans. Amer. Math. Soc., V93, P418, DOI [DOI 10.1090/S0002-9947-1959-0110078-1, 10.1090/S0002-9947-1959-0110078-1, DOI 10.2307/1993504]
[3]   ON SPHERICAL IMAGE MAPS WHOSE JACOBIANS DO NOT CHANGE SIGN [J].
HARTMAN, P ;
NIRENBERG, L .
AMERICAN JOURNAL OF MATHEMATICS, 1959, 81 (04) :901-920
[5]  
Jung H, 1901, J REINE ANGEW MATH, V123, P241
[6]  
KOHLMANN P, 1991, GEOMETRIAE DEDICATA, V40, P191
[7]  
KOHLMANN P, 1995, J REINE ANGEW MATH, V458, P201
[8]  
KOHLMANN P, 1994, MATH NACHR, V166, P217
[9]  
Rockafellar R. T., 1972, Princeton Mathematical Series
[10]   ON HYPERSURFACES WITH NO NEGATIVE SECTIONAL CURVATURES [J].
SACKSTEDER, R .
AMERICAN JOURNAL OF MATHEMATICS, 1960, 82 (03) :609-630