An Impedance and Multi-Wavelength Near-Infrared Spectroscopy IC for Non-Invasive Blood Glucose Estimation

被引:66
作者
Song, Kiseok [1 ]
Ha, Unsoo [1 ]
Park, Seongwook [1 ]
Bae, Joonsung [1 ]
Yoo, Hoi-Jun [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Elect Engn, Taejon 305701, South Korea
基金
新加坡国家研究基金会;
关键词
Adaptive gain control; artificial neural network; frequency sweep sinusoidal oscillator; impedance spectroscopy; near-infrared spectroscopy; non-invasive glucose monitoring; FRONT-END;
D O I
10.1109/JSSC.2014.2384037
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A multi-modal spectroscopy IC combining impedance spectroscopy (IMPS) and multi-wavelength near-infrared spectroscopy (mNIRS) is proposed for high precision non-invasive glucose level estimation. A combination of IMPS and mNIRS can compensate for the glucose estimation error to improve its accuracy. The IMPS circuit measures dielectric characteristics of the tissue using the RLC resonant frequency and the resonant impedance to estimate the glucose level. To accurately find resonant frequency, a 2-step frequency sweep sinusoidal oscillator (FSSO) is proposed: 1) 8-level coarse frequency switching (f(STEP) = 9.4 kHz) in 10-76 kHz, and 2) fine analog frequency sweep in the range of 18.9 kHz. During the frequency sweep, the adaptive gain control loop stabilizes the output voltage swing (400 mV(p-p)). To improve accuracy of mNIRS, three wavelengths, 850 nm, 950 nm, and 1,300 nm, are used. For highly accurate glucose estimation, the measurement data of the IMPS and mNIRS are combined by an artificial neural network (ANN) in external DSP. The proposed ANN method reduces the mean absolute relative difference to 8.3% from 15% of IMPS, and 15-20% of mNIRS in 80-180 mg/dL blood glucose level. The proposed multi-modal spectroscopy IC occupies 12.5 mm(2) in a 0.18 mu m 1P6M CMOS technology and dissipates a peak power of 38 mW with the maximum radiant emitting power of 12.1 mW.
引用
收藏
页码:1025 / 1037
页数:13
相关论文
共 23 条
[1]  
[Anonymous], PROD SPEC AFG3011C
[2]  
Beckers I., SPECTRAL RESPONSE GL
[3]   MULTIVARIATE DETERMINATION OF GLUCOSE IN WHOLE-BLOOD USING PARTIAL LEAST-SQUARES AND ARTIFICIAL NEURAL NETWORKS BASED ON MIDINFRARED SPECTROSCOPY [J].
BHANDARE, P ;
MENDELSON, Y ;
PEURA, RA ;
JANATSCH, G ;
KRUSEJARRES, JD ;
MARBACH, R ;
HEISE, HM .
APPLIED SPECTROSCOPY, 1993, 47 (08) :1214-1221
[4]   Non-invasive glucose monitoring in patients with diabetes: A novel system based on impedance spectroscopy [J].
Caduff, A. ;
Dewarrat, F. ;
Talary, M. ;
Stalder, G. ;
Heinemann, L. ;
Feldman, Yu. .
BIOSENSORS & BIOELECTRONICS, 2006, 22 (05) :598-604
[5]   Development of a real-time corneal birefringence compensated glucose sensing polarimeter [J].
Cameron, Brent D. ;
Anumula, Harini .
DIABETES TECHNOLOGY & THERAPEUTICS, 2006, 8 (02) :156-164
[6]  
Clarke W. L., 1987, DIABETES CARE
[7]   Raman spectroscopy for noninvasive glucose measurements [J].
Enejder, AMK ;
Scecina, TG ;
Oh, J ;
Hunter, M ;
Shih, WC ;
Sasic, S ;
Horowitz, GL ;
Feld, MS .
JOURNAL OF BIOMEDICAL OPTICS, 2005, 10 (03) :1-9
[8]   Dielectric spectroscopy study of specific glucose influence on human erythrocyte membranes [J].
Hayashi, Y ;
Livshits, L ;
Caduff, A ;
Feldman, Y .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2003, 36 (04) :369-374
[9]   Noninvasive blood glucose monitoring with optical coherence tomography - A pilot study in human subjects [J].
Larin, KV ;
Eledrisi, MS ;
Motamedi, M ;
Esenaliev, RO .
DIABETES CARE, 2002, 25 (12) :2263-2267
[10]  
Ming C. Z., 2009, IEEE INT C BIOM PHAR