Effect of electrochemical dissolution and deposition order on lithium dendrite formation: a top view investigation

被引:46
作者
Li, Wenjun [1 ]
Zheng, Hao [1 ]
Chu, Geng [1 ]
Luo, Fei [1 ]
Zheng, Jieyun [1 ]
Xiao, Dongdong [1 ]
Li, Xing [2 ]
Gu, Lin [1 ]
Li, Hong [1 ]
Wei, Xianlong [2 ]
Chen, Qing [2 ]
Chen, Liquan [1 ]
机构
[1] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
[2] Peking Univ, Dept Elect, Key Lab Phys & Chem Nanodevices, Beijing 100871, Peoples R China
关键词
IN-SITU; ELECTROLYTE INTERFACES; RECHARGEABLE BATTERIES; LITHIUM/POLYMER CELLS; OPTICAL-CELL; LI BATTERIES; GROWTH; ANODE; CHALLENGES; METAL;
D O I
10.1039/c4fd00124a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Rechargeable metallic lithium batteries are the ultimate solution to electrochemical storage due to their high theoretical energy densities. One of the key technological challenges is to control the morphology of metallic lithium electrode during electrochemical dissolution and deposition. Here we have investigated the morphology change of metallic lithium electrode after charging and discharging in nonaqueous batteries by ex situ SEM techniques from a top view. Formation of the hole structure after lithium dissolution and the filling of dendrite-like lithium into the holes has been observed for the first time. In addition, an in situ SEM investigation using an all-solid Li/Li2O/super aligned carbon nanotube set-up indicates that lithium ions could diffuse across through the surface oxide layer and grow lithium dendrites after applying an external electric field. The growth of lithium dendrites can be guided by electron flow when the formed lithium dendrite touches the carbon nanotube.
引用
收藏
页码:109 / 124
页数:16
相关论文
共 34 条
[1]   A comparative study of synthetic graphite and Li electrodes in electrolyte solutions based on ethylene carbonate dimethyl carbonate mixtures [J].
Aurbach, D ;
Markovsky, B ;
Shechter, A ;
EinEli, Y ;
Cohen, H .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (12) :3809-3820
[2]   THE SURFACE-CHEMISTRY OF LITHIUM ELECTRODES IN ALKYL CARBONATE SOLUTIONS [J].
AURBACH, D ;
EINELY, Y ;
ZABAN, A .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1994, 141 (01) :L1-L3
[3]   New insights into the interactions between electrode materials and electrolyte solutions for advanced nonaqueous batteries [J].
Aurbach, D ;
Markovsky, B ;
Levi, MD ;
Levi, E ;
Schechter, A ;
Moshkovich, M ;
Cohen, Y .
JOURNAL OF POWER SOURCES, 1999, 81 :95-111
[4]   IDENTIFICATION OF SURFACE-FILMS FORMED ON LITHIUM IN DIMETHOXYETHANE AND TETRAHYDROFURAN SOLUTIONS [J].
AURBACH, D ;
DAROUX, ML ;
FAGUY, PW ;
YEAGER, E .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1988, 135 (08) :1863-1871
[5]   X-ray photoelectron spectroscopy studies of lithium surfaces prepared in several important electrolyte solutions. A comparison with previous studies by Fourier transform infrared spectroscopy [J].
Aurbach, D ;
Weissman, I ;
Schechter, A ;
Cohen, H .
LANGMUIR, 1996, 12 (16) :3991-4007
[6]  
Aurbach D., 1999, NONOAQUEOUS ELECTROC
[7]  
Bates J. B, 1994, US Patent, Patent No. 5314765
[8]  
Bhattacharyya R, 2010, NAT MATER, V9, P504, DOI [10.1038/nmat2764, 10.1038/NMAT2764]
[9]   Dendritic growth mechanisms in lithium/polymer cells [J].
Brissot, C ;
Rosso, M ;
Chazalviel, JN ;
Lascaud, S .
JOURNAL OF POWER SOURCES, 1999, 81 :925-929
[10]  
Chandrashekar S, 2012, NAT MATER, V11, P311, DOI [10.1038/NMAT3246, 10.1038/nmat3246]