In-situ TiC reinforced CoCrCuFeNiSi0.2 high-entropy alloy coatings designed for enhanced wear performance by laser cladding

被引:100
|
作者
Guo, Yajun [1 ]
Li, Chonggui [1 ,2 ]
Zeng, Ming [1 ]
Wang, Jinqian [1 ]
Deng, Peiran [1 ]
Wang, You [3 ]
机构
[1] Shanghai Univ Engn Sci, Sch Mat Engn, Shanghai 201620, Peoples R China
[2] Southern Methodist Univ, Res Ctr Adv Mfg, Lyle Sch Engn, Dallas, TX 75205 USA
[3] Harbin Inst Technol, Dept Mat Sci, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
Laser cladding; High-entropy alloys; Composite coatings; Wear resistance; MECHANICAL-PROPERTIES; MICROSTRUCTURE; BEHAVIOR; RESISTANCE; EVOLUTION; ELEMENTS;
D O I
10.1016/j.matchemphys.2019.122522
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In-situ synthesis of TiC reinforced CoCrCuFeNiSi0.2 high-entropy alloy (HEA) coatings were fabricated on the surface of 304 stainless steels by laser cladding. The influence of Ti and C addition on the phase composition and microstructure of the CoCrCuFeNiSi0.2 HEA composite coatings reinforced by (Ti, C)(x) (x = 0, 0.5, 1.0, 1.5) were investigated by X-ray diffractometer, optical microscope and scanning electron microscope, respectively. The hardness and the room-temperature wear resistance of the HEA coatings were measured by Vickers hardness tester and dry sliding friction and wear tester. The experimental results show that the coatings without Ti and C consist of a single FCC solid solution structure. By the addition of Ti and C, the coatings consist of FCC solid solution and TiC. The microstructure of the HEA coatings are composed of typical dendrites. With the addition of Ti and C, the in-situ TiC ceramics are mainly distributed at the grain boundaries. Moreover, by further increase of the (Ti, C)(x) content, the volume fraction of the TiC ceramic in the composite coating is also gradually increased. The microhardness and wear resistance of the coatings with Ti and C additions are significantly improved, compared to those of the coatings without any such addition. Particularly, for the (Ti, C)(1.0) coating, its average microhardness and wear volume is 498.5 HV0.2 and 0.42 mm(3), respectively. In addition, the addition of Ti and C gradually reduce the coefficient of friction of the CoCrCuFeNiSi0.2 (Ti, C)(x) HEA coatings.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] INFLUENCE OF TiC CONTENT ON MICROSTRUCTURE AND PROPERTIES OF AlCoCrFeNi HIGH-ENTROPY ALLOY COATINGS PREPARED BY LASER CLADDING
    LI, Zhaotong
    Jing, Cainian
    Feng, Yan
    Wu, Zhonglin
    Lin, Tao
    Zhao, Jingrui
    Liu, Lei
    SURFACE REVIEW AND LETTERS, 2022, 29 (10)
  • [22] Microstructure Evolution and Properties of Laser Cladding CoCrFeNiTiAlx High-Entropy Alloy Coatings
    Xu, Yiku
    Li, Zhiyuan
    Liu, Jianru
    Chen, Yongnan
    Zhang, Fengying
    Wu, Lei
    Hao, Jianmin
    Liu, Lin
    COATINGS, 2020, 10 (04)
  • [23] The influence of WC content on the microstructure and properties of laser cladding CoCrFeMnNiSi1.6 high-entropy alloy coatings
    Feng, Meiyan
    Lin, Tianxiang
    Lian, Guofu
    Chen, Changrong
    Huang, Xu
    CERAMICS INTERNATIONAL, 2024, 50 (24) : 55286 - 55306
  • [24] Microstructure and tribological properties of in-situ TiC reinforced Ti2AlNb-based coatings by laser cladding
    Liang, Jing
    Jia, Xinyu
    Liu, Ye
    Yin, Xiuyuan
    Chen, Suiyuan
    Liu, Changsheng
    SURFACE & COATINGS TECHNOLOGY, 2022, 446
  • [25] Microhardness, wear resistance, and corrosion resistance of AlxCrFeCoNiCu high-entropy alloy coatings on aluminum by laser cladding
    Li, Yanzhou
    Shi, Yan
    OPTICS AND LASER TECHNOLOGY, 2021, 134 (134)
  • [26] Effect of annealing on microstructure and corrosion resistance of W+in-situ TiC enhanced CoCrFeNiSi0.2 high entropy alloy coatings by laser cladding
    Li, Sun
    Niu, Wei
    Zheng, Yang
    Lei, Yi-Wen
    MATERIALS TODAY COMMUNICATIONS, 2024, 41
  • [27] Effect of WC content on the microstructure and wear resistance of laser cladding AlCoCrFeNiTi0.5 high-entropy alloy coatings
    Yue, Kun
    Wang, Lin
    Xu, Zhe
    Cheng, Chunlong
    Wang, Yeqing
    Fan, Yu
    Xu, Jie
    Wang, Zhijun
    Chen, Zheng
    CERAMICS INTERNATIONAL, 2024, 50 (21) : 41515 - 41526
  • [28] Synthesis and Characterization of AlCoCrFeNiNbx High-Entropy Alloy Coatings by Laser Cladding
    Jiang, Hui
    Han, Kaiming
    Li, Dayan
    Cao, Zhiqiang
    CRYSTALS, 2019, 9 (01) : 1 - 11
  • [29] Effects of Boron Content on Microstructure and Wear Properties of FeCoCrNiBx High-Entropy Alloy Coating by Laser Cladding
    Liu, Dezheng
    Zhao, Jing
    Li, Yan
    Zhu, Wenli
    Lin, Liangxu
    APPLIED SCIENCES-BASEL, 2020, 10 (01):
  • [30] Microstructures and Wear Resistance of AlCrFeNi2W0.2Nbx High-Entropy Alloy Coatings Prepared by Laser Cladding
    Hui Liang
    Hongwei Yao
    Dongxu Qiao
    Shuang Nie
    Yiping Lu
    Dewei Deng
    Zhiqiang Cao
    Tongmin Wang
    Journal of Thermal Spray Technology, 2019, 28 : 1318 - 1329