In-situ TiC reinforced CoCrCuFeNiSi0.2 high-entropy alloy coatings designed for enhanced wear performance by laser cladding

被引:105
作者
Guo, Yajun [1 ]
Li, Chonggui [1 ,2 ]
Zeng, Ming [1 ]
Wang, Jinqian [1 ]
Deng, Peiran [1 ]
Wang, You [3 ]
机构
[1] Shanghai Univ Engn Sci, Sch Mat Engn, Shanghai 201620, Peoples R China
[2] Southern Methodist Univ, Res Ctr Adv Mfg, Lyle Sch Engn, Dallas, TX 75205 USA
[3] Harbin Inst Technol, Dept Mat Sci, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
Laser cladding; High-entropy alloys; Composite coatings; Wear resistance; MECHANICAL-PROPERTIES; MICROSTRUCTURE; BEHAVIOR; RESISTANCE; EVOLUTION; ELEMENTS;
D O I
10.1016/j.matchemphys.2019.122522
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In-situ synthesis of TiC reinforced CoCrCuFeNiSi0.2 high-entropy alloy (HEA) coatings were fabricated on the surface of 304 stainless steels by laser cladding. The influence of Ti and C addition on the phase composition and microstructure of the CoCrCuFeNiSi0.2 HEA composite coatings reinforced by (Ti, C)(x) (x = 0, 0.5, 1.0, 1.5) were investigated by X-ray diffractometer, optical microscope and scanning electron microscope, respectively. The hardness and the room-temperature wear resistance of the HEA coatings were measured by Vickers hardness tester and dry sliding friction and wear tester. The experimental results show that the coatings without Ti and C consist of a single FCC solid solution structure. By the addition of Ti and C, the coatings consist of FCC solid solution and TiC. The microstructure of the HEA coatings are composed of typical dendrites. With the addition of Ti and C, the in-situ TiC ceramics are mainly distributed at the grain boundaries. Moreover, by further increase of the (Ti, C)(x) content, the volume fraction of the TiC ceramic in the composite coating is also gradually increased. The microhardness and wear resistance of the coatings with Ti and C additions are significantly improved, compared to those of the coatings without any such addition. Particularly, for the (Ti, C)(1.0) coating, its average microhardness and wear volume is 498.5 HV0.2 and 0.42 mm(3), respectively. In addition, the addition of Ti and C gradually reduce the coefficient of friction of the CoCrCuFeNiSi0.2 (Ti, C)(x) HEA coatings.
引用
收藏
页数:9
相关论文
共 31 条
[1]   Microstructure evolution and wear properties of in situ synthesized TiB2 and TiC reinforced steel matrix composites [J].
Akhtar, Farid .
JOURNAL OF ALLOYS AND COMPOUNDS, 2008, 459 (1-2) :491-497
[2]   In-situ formation of novel TiC-particle-reinforced 316L stainless steel bulk-form composites by selective laser melting [J].
AlMangour, Bandar ;
Grzesiak, Dariusz ;
Yang, Jenn-Ming .
JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 706 :409-418
[3]   CONTACT AND RUBBING OF FLAT SURFACES [J].
ARCHARD, JF .
JOURNAL OF APPLIED PHYSICS, 1953, 24 (08) :981-988
[4]   The effect of surface treatment with atmospheric pressure plasma jet, generated by air, on corrosion properties of AISI 304L stainless steel [J].
Brunelli, K. ;
Gottardello, S. ;
Napolitani, E. ;
Dal Bianco, B. ;
Bertocello, R. ;
Magrini, M. ;
Dabala, M. .
MATERIALS CHEMISTRY AND PHYSICS, 2012, 136 (2-3) :1073-1080
[5]   The tribological properties of Al0.6CoCrFeNi high-entropy alloy with the σ phase precipitation at elevated temperature [J].
Chen, Ming ;
Lan, Liwei ;
Shi, Xiaohui ;
Yang, Huijun ;
Zhang, Min ;
Qiao, Junwei .
JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 777 :180-189
[6]   Wear behavior of Al0.6CoCrFeNi high-entropy alloys: Effect of environments [J].
Chen, Ming ;
Shi, Xiao Hui ;
Yang, Huijun ;
Liaw, Peter K. ;
Gao, Michael C. ;
Hawk, Jeffrey A. ;
Qiao, Junwei .
JOURNAL OF MATERIALS RESEARCH, 2018, 33 (19) :3310-3320
[7]   Formation and Mechanical Properties of CoNiCuFeCr High-Entropy Alloys Coatings Prepared by Plasma Transferred Arc Cladding Process [J].
Cheng, J. B. ;
Liang, X. B. ;
Wang, Z. H. ;
Xu, B. S. .
PLASMA CHEMISTRY AND PLASMA PROCESSING, 2013, 33 (05) :979-992
[8]   Evolution of microstructure and mechanical properties of in situ synthesized TiC-TiB2/CoCrCuFeNi high entropy alloy coatings [J].
Cheng, Jiangbo ;
Liu, Dan ;
Liang, Xiubing ;
Chen, Yongxiong .
SURFACE & COATINGS TECHNOLOGY, 2015, 281 :109-116
[9]   In situ synthesis of TiC cermet by spark plasma reaction sintering [J].
Ding, L. ;
Xiang, D. P. ;
Pan, Y. L. ;
Zhang, T. M. ;
Wu, Z. Y. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2016, 661 :136-140
[10]   The microstructure and properties of (FeCrNiCo)AlxCuy high-entropy alloys and their TiC-reinforced composites [J].
Fan, Q. C. ;
Li, B. S. ;
Zhang, Y. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2014, 598 :244-250