DISCONTINUOUS GALERKIN METHODS FOR DELAY DIFFERENTIAL EQUATIONS OF PANTOGRAPH TYPE

被引:71
作者
Brunner, Hermann [1 ,2 ]
Huang, Qiumei [3 ]
Xie, Hehu [4 ]
机构
[1] Mem Univ Newfoundland, Dept Math & Stat, St John, NF A1C 5S7, Canada
[2] Hong Kong Baptist Univ, Dept Math, Hong Kong, Hong Kong, Peoples R China
[3] Beijing Univ Technol, Coll Appl Sci, Beijing 100124, Peoples R China
[4] Chinese Acad Sci, Acad Math & Syst Sci, ICMSEC, LSEC, Beijing 100190, Peoples R China
基金
加拿大自然科学与工程研究理事会;
关键词
pantograph delay differential equations; vanishing proportional delay; discontinuous Galerkin method; optimal order of superconvergence; INTEGRODIFFERENTIAL EQUATIONS; COLLOCATION METHODS; PROPORTIONAL DELAY; NUMERICAL-ANALYSIS; VANISHING DELAYS; SUPERCONVERGENCE; MESHES;
D O I
10.1137/090771922
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the application of the discontinuous Galerkin method to delay differential equations with vanishing delay qt (0 < q < 1). Our aim is to establish optimal global and local superconvergence results on uniform meshes and compare these with analogous estimates for collocation methods. The theoretical results are illustrated by a broad range of numerical examples.
引用
收藏
页码:1944 / 1967
页数:24
相关论文
共 24 条
[1]  
[Anonymous], 2003, Numerical Methods for Delay Differential Equations
[2]   Superconvergence in collocation methods on quasi-graded meshes for functional differential equations with vanishing delays [J].
Bellen, A. ;
Brunner, H. ;
Maset, S. ;
Torelli, L. .
BIT NUMERICAL MATHEMATICS, 2006, 46 (02) :229-247
[3]   Preservation of superconvergence in the numerical integration of delay differential equations with proportional delay [J].
Bellen, A .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2002, 22 (04) :529-536
[4]  
Brunner, 2010, 7 LECTIRES THEORY NU
[5]  
Brunner H, 2004, ACT NUMERIC, V13, P55, DOI 10.1017/S0962492904000170
[6]   hp-discontinuous Galerkin time-stepping for Volterra integrodifferential equations [J].
Brunner, H ;
Schötzau, D .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (01) :224-245
[7]   Geometric meshes in collocation methods for Volterra integral equations with proportional delays [J].
Brunner, H ;
Hu, QUY ;
Lin, Q .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2001, 21 (04) :783-798
[8]   Optimal superconvergence results for delay integro-differential equations of pantograph type [J].
Brunner, Hermann ;
Hu, Qiya .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 45 (03) :986-1004
[9]   Current work and open problems in the numerical analysis of Volterra functional equations with vanishing delays [J].
Brunner, Hermann .
FRONTIERS OF MATHEMATICS IN CHINA, 2009, 4 (01) :3-22
[10]  
BUHMANN M, 1993, MATH COMPUT, V60, P575, DOI 10.1090/S0025-5718-1993-1176707-2