On the appearance of a Hopf bifurcation in a non-ideal mechanical problem

被引:17
作者
Dantas, MJH [1 ]
Balthazar, JM
机构
[1] Univ Fed Uberlandia, Fac Matemat, BR-38408100 Uberlandia, MG, Brazil
[2] UNESP, Dept Estatistica Matemat Aplicada & Computacao, Inst Geociencias & Ciencias Exatas, BR-13500230 Rio Claro, SP, Brazil
[3] Univ Estadual Campinas, Mech Design Dept, BR-13083970 Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Hopf bifurcation; non-ideal problems; center manifold;
D O I
10.1016/S0093-6413(03)00041-7
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this paper we studied a non-ideal system with two degrees of freedom consisting of a dumped nonlinear oscillator coupled to a rotatory part. We investigated the stability of the equilibrium point of the system and we obtain, in the critical case, sufficient conditions in order to obtain an appropriate Normal Form. From this, we get conditions for the appearance of Hopf Bifurcation when the difference between the driving torque and the resisting torque is small. It was necessary to use the Bezout Theorem, a classical result of Algebraic Geometry, in the obtaining of the foregoing results. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:493 / 503
页数:11
相关论文
共 10 条
[1]  
Balthazar J.M., 2002, Meccanica, V330, P1, DOI [10.1007/978-3-319-54169-3_1, DOI 10.1007/978-3-319-54169-3_1]
[2]  
BALTHAZAR JM, 1999, 49 BRAZ SEM AN STAT, P137
[3]  
BALTHAZAR JM, 2001, 6 C DYN SYST THEOR A, P27
[4]   RATE OF DECAY IN CRITICAL CASES .1. FINITE-DIMENSIONAL PROBLEMS [J].
CARR, J ;
ALAMOOD, N .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1980, 75 (01) :242-250
[5]  
DANTAS MJH, 2003, IN PRESS LOCAL ANAL
[6]  
Guckenheimer J, 2013, APPL MATH SCI
[7]  
Kononenko V.O., 1969, VIBRATING SYSTEMS LT
[8]  
Meirovitch L, 1970, METHODS ANAL DYNAMIC
[9]  
Nayfeh A., 1979, NONLINEAR OSCILLATIO
[10]  
Walker R J., 1950, Algebraic Curves