Diffusive Holling-Tanner predator prey models in periodic environments

被引:2
作者
Cappelletti Montano, Mirella [1 ]
Lisena, Benedetta [1 ]
机构
[1] Univ Bari, Dipartimento Matemat, Via E Orabona 4, I-70125 Bari, Italy
关键词
Predator-prey; Diffusive system; Periodicity; Global stability; GLOBAL STABILITY; EVOLVING DOMAINS; SYSTEMS;
D O I
10.1016/j.aml.2018.07.024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, by using the Lyapunov method, we establish sufficient conditions for the global asymptotic stability of the positive periodic solution to diffusive Holling-Tanner predator prey models with periodic coefficients and no-flux conditions. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:42 / 49
页数:8
相关论文
共 11 条
[1]   ASYMPTOTIC-BEHAVIOR OF SOLUTIONS OF PERIODIC COMPETITION DIFFUSION SYSTEM [J].
AHMAD, S ;
LAZER, AC .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1989, 13 (03) :263-284
[2]  
Ahmad S., 2013, GRUYTER SERIES MATH, V2
[3]  
[Anonymous], 1975, STABILITY COMPLEXITY
[4]   Global stability in a diffusive Holling-Tanner predator-prey model [J].
Chen, Shanshan ;
Shi, Junping .
APPLIED MATHEMATICS LETTERS, 2012, 25 (03) :614-618
[5]   The diffusive logistic equation on periodically evolving domains [J].
Jiang, Dan-Hua ;
Wang, Zhi-Cheng .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 458 (01) :93-111
[7]   Global stability of the equilibrium of a diffusive Holling-Tanner prey-predator model [J].
Peng, Rui ;
Wang, Mingxin .
APPLIED MATHEMATICS LETTERS, 2007, 20 (06) :664-670
[8]  
Smoller J., 1994, SHOCK WAVES REACTION
[9]   STABILITY AND INTRINSIC GROWTH-RATES OF PREY AND PREDATOR POPULATIONS [J].
TANNER, JT .
ECOLOGY, 1975, 56 (04) :855-867
[10]   Global existence for semilinear reaction-diffusion systems on evolving domains [J].
Venkataraman, Chandrasekhar ;
Lakkis, Omar ;
Madzvamuse, Anotida .
JOURNAL OF MATHEMATICAL BIOLOGY, 2012, 64 (1-2) :41-67