Sentiment Analysis using Word2vec-CNN-BiLSTM Classification

被引:10
作者
Yue, Wang [1 ]
Li, Lei [2 ]
机构
[1] Hosei Univ, Grad Sch Sci Engn, Li Lab, 3-7-2 Kajinocho, Koganei, Tokyo 1848584, Japan
[2] Hosei Univ, Dept Sci & Engn, 3-7-2 Kajinocho, Koganei, Tokyo 1848584, Japan
来源
2020 SEVENTH INTERNATIONAL CONFERENCE ON SOCIAL NETWORK ANALYSIS, MANAGEMENT AND SECURITY (SNAMS) | 2020年
关键词
sentiment analysis; CNN; BiLSTM; Word2vec; text classification;
D O I
10.1109/SNAMS52053.2020.9336549
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Traditional neural network based short text classification algorithms for sentiment classification is easy to find the errors. In order to solve this problem, the Word Vector Model (Word2vec), Bidirectional Long-term and Short-term Memory networks (BiLSTM) and convolutional neural network (CNN) are combined. The experiment shows that the accuracy of CNN-BiLSTM model associated with Word2vec word embedding achieved 91.48%. This proves that the hybrid network model performs better than the single structure neural network in short text.
引用
收藏
页码:35 / 39
页数:5
相关论文
共 18 条
[1]  
Ceraj T, 2019, REDEFINING CANC TREA
[2]  
Dongwook Lee, 2019, arXiv
[3]  
Jasmir J., 2020, P SRIWIJAYA INT C IN, P396
[4]   Opinion mining using ensemble text hidden Markov models for text classification [J].
Kang, Mangi ;
Ahn, Jaelim ;
Lee, Kichun .
EXPERT SYSTEMS WITH APPLICATIONS, 2018, 94 :218-227
[5]  
Li PH, 2018, CHIN CONT DECIS CONF, P309, DOI 10.1109/CCDC.2018.8407150
[6]   Teleconsultations between Patients and Healthcare Professionals in Primary Care in Catalonia: The Evaluation of Text Classification Algorithms Using Supervised Machine Learning [J].
Lopez Segui, Francesc ;
Egg Aguilar, Ricardo Ander ;
de Maeztu, Gabriel ;
Garcia-Altes, Anna ;
Garcia Cuyas, Francesc ;
Walsh, Sandra ;
Sagarra Castro, Marta ;
Vidal-Alaball, Josep .
INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2020, 17 (03)
[7]  
Mikolov T., 2013, Advances in Neural Information Processing Systems, V26
[8]  
Radford A., 2019, OpenAI Blog, V1, P9, DOI DOI 10.18653/V1/P19-1195
[9]   A Hybrid CNN-LSTM Model for Improving Accuracy of Movie Reviews Sentiment Analysis [J].
Rehman, Anwar Ur ;
Malik, Ahmad Kamran ;
Raza, Basit ;
Ali, Waqar .
MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (18) :26597-26613
[10]   Leveraging Contextual Sentence Relations for Extractive Summarization Using a Neural Attention Model [J].
Ren, Pengjie ;
Chen, Zhumin ;
Ren, Zhaochun ;
Wei, Furu ;
Ma, Jun ;
de Rijke, Maarten .
SIGIR'17: PROCEEDINGS OF THE 40TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 2017, :95-104