Engineering design of the CFETR machine

被引:73
作者
Song, Yuntao [1 ,3 ]
Li, Jiangang [1 ,3 ]
Wan, Yuanxi [1 ,3 ]
Liu, Yong [2 ]
Wang, Xiaolin [5 ]
Wan, Baonian [1 ]
Fu, Peng [1 ]
Weng, Peide [1 ]
Wu, Songtao [1 ]
Duan, Xuru [2 ]
Yang, Qingwei [2 ]
Feng, Kaiming [2 ]
Li, Qiang [2 ]
Ye, Mingyou [3 ]
Zhuang, Ge [3 ]
Liang, Yunfeng [1 ]
Gao, Xiang [1 ]
Chen, Changan [5 ]
Wang, Heyi [5 ]
Zheng, Guoyao [2 ]
Xu, Yuhong [6 ]
Qian, Tianlin [4 ]
Chan, Vincent [3 ]
Xiao, Bingjia [1 ,2 ]
Lu, Kun [1 ]
Zheng, Jinxing [1 ]
Lu, Mingxuan [1 ]
Liu, Dequan [2 ]
Liu, Jian [2 ]
Wu, Yu [1 ]
Liu, Xufeng [1 ]
Shi, Yi [1 ]
Hou, Binglin [2 ]
Liu, Chen [1 ]
Ge, Jian [1 ]
Zhou, Caipin [2 ]
Ran, Hong [2 ]
Wang, Qijie [2 ]
Wang, Xiaoyu [2 ]
Liu, Songlin [1 ]
Liu, Sumei [1 ]
Yao, Damao [1 ]
Cheng, Yong [1 ]
Hu, Liqun [1 ]
Hu, Chundong [1 ]
Liu, Fukun [1 ]
Chen, Gen [1 ]
机构
[1] Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Peoples R China
[2] Southwestern Inst Phys, POB 432, Chengdu 610041, Sichuan, Peoples R China
[3] Univ Sci & Technol China, Hefei 230026, Peoples R China
[4] China Nuclear New Corp, Beijing 100822, Peoples R China
[5] China Acad Engn Phys, Mianyang 621900, Peoples R China
[6] Southwest Jiaotong Univ, Chengdu 611756, Peoples R China
关键词
CFETR; Engineering design; Tokamak; Magnetic confinement; WCCB BLANKET; TOKAMAK; STATE;
D O I
10.1016/j.fusengdes.2022.113247
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The China Fusion Engineering Test Reactor (CFETR) is the next step in China's roadmap for magnetic confinement fusion development. It aims to bridge the gap between the ITER fusion experimental reactor and the demonstration fusion power reactor (DEMO). The CFETR will be operated in two phases. Phase I aims to achieve fusion power of 50-200 MW, Q(plasma) = 1-5, TBR > 1.0 and neutron irradiation effects similar to 10 dpa. Phase II aims to perform tokamak DEMO validation under fusion power > 1 GW, neutron irradiation effects similar to 50 dpa and fig-Q(plasma) > 10. To ensure that the CFETR machine can achieve these goals, the major/minor radii of plasma have been altered from R = 5.7 m/a = 1.6 m to R = 7.2 m/a = 2.2 m. The new machine can meet the targets of both Phase I and Phase II and achieve smooth transfer between them. The configuration of the CFETR machine is presented in this paper. Then, the design progress and status of some key components are described, including the magnet system, blanket system, diverter system, remote handling system, vacuum vessel, thermal shield and cryostat. The research and development of most components are underway and will be demonstrated in the near future.
引用
收藏
页数:10
相关论文
共 22 条
  • [1] [Anonymous], 2012, G74MA8010528W02
  • [2] Remote-handling challenges in fusion research and beyond
    Buckingham, Rob
    Loving, Antony
    [J]. NATURE PHYSICS, 2016, 12 (05) : 391 - 393
  • [3] Multi-purpose deployer for ITER in-vessel maintenance
    Choi, Chang-Hwan
    Tesini, Alessandro
    Subramanian, Rajendran
    Rolfe, Alan
    Mills, Simon
    Scott, Robin
    Froud, Tim
    Haist, Bernhard
    McCarron, Eddie
    [J]. FUSION ENGINEERING AND DESIGN, 2015, 98-99 : 1448 - 1452
  • [4] Results from deuterium-tritium tokamak confinement experiments
    Hawryluk, RJ
    [J]. REVIEWS OF MODERN PHYSICS, 1998, 70 (02) : 537 - 587
  • [5] Development of neutronic-thermal hydraulic-mechanic-coupled platform for WCCB blanket design for CFETR
    Jiang, Kecheng
    Ding, Weiqiang
    Zhang, Xiaokang
    Li, Jia
    Ma, Xuebin
    Huang, Kai
    Luo, Yuetong
    Liu, Songlin
    [J]. FUSION ENGINEERING AND DESIGN, 2018, 137 : 312 - 324
  • [6] Using one hybrid 3D-1D-3D approach for the conceptual design of WCCB blanket for CFETR
    Jiang, Kecheng
    Zhang, Xiaokang
    Li, Jia
    Ma, Xuebin
    Liu, Songlin
    [J]. FUSION ENGINEERING AND DESIGN, 2017, 114 : 57 - 71
  • [7] High fusion performance from deuterium-tritium plasmas in JET
    Keilhacker, M
    Gibson, A
    Gormezano, C
    Lomas, PJ
    Thomas, PR
    Watkins, ML
    Andrew, P
    Balet, B
    Borba, D
    Challis, CD
    Coffey, I
    Cottrell, GA
    De Esch, HPL
    Deliyanakis, N
    Fasoli, A
    Gowers, CW
    Guo, HY
    Huysmans, GTA
    Jones, TTC
    Kerner, W
    König, RWT
    Loughlin, MJ
    Maas, A
    Marcus, FB
    Nave, MFF
    Rimini, FG
    Sadler, GJ
    Sharapov, SE
    Sips, G
    Smeulders, P
    Söldner, FX
    Taroni, A
    Tubbing, BJD
    von Hellermann, MG
    Ward, DJ
    [J]. NUCLEAR FUSION, 1999, 39 (02) : 209 - 234
  • [8] The KSTAR project: An advanced steady state superconducting tokamak experiment
    Lee, GS
    Kim, J
    Hwang, SM
    Chang, CS
    Chang, HY
    Cho, MH
    Choi, BH
    Kim, K
    Cho, KW
    Cho, S
    Choh, KK
    Choi, CH
    Choi, JH
    Choi, JW
    Choi, IS
    Do, CJ
    Ha, TH
    Han, JH
    Hong, JS
    Hong, KH
    Hur, NI
    Hwang, IS
    Im, KH
    Jhang, HG
    Jung, YS
    Kim, BC
    Kim, DL
    Kim, GH
    Kim, HS
    Kim, JS
    Kim, JY
    Kim, WC
    Kim, YS
    Kwon, KH
    Kyum, MC
    Lee, BJ
    Lee, DK
    Lee, HG
    Lee, JM
    Lee, SG
    Na, HG
    Oh, YK
    Park, JH
    Ri, HC
    Ryoo, YS
    Song, KY
    Yang, HL
    Yang, JG
    Yoo, BJ
    Yoo, SJ
    [J]. NUCLEAR FUSION, 2000, 40 (3Y) : 575 - 582
  • [9] Design and analysis of the equatorial inboard WCCB blanket module for CFETR
    Lei, Mingzhun
    Wu, Qigang
    Xu, Shuling
    Xu, Kun
    Ma, Xuebin
    Liu, Songlin
    [J]. FUSION ENGINEERING AND DESIGN, 2020, 161
  • [10] Interface design of the blanket system for CFETR
    Lei, Mingzhun
    Song, Yuntao
    Ni, Xiaojun
    Wu, Xinghua
    Shen, Junsong
    Liu, Sumei
    Liu, Songlin
    Wang, Xiaoyu
    Cheng, Yong
    Xie, Yuanlai
    Wang, Xiaojie
    Liu, Liang
    Chen, Gen
    Xu, Tiejun
    Lu, Kun
    [J]. NUCLEAR FUSION, 2020, 60 (12)