Unified evaluation of hydrogen-induced crack growth in fatigue tests and fracture toughness tests of a carbon steel

被引:53
作者
Ogawa, Y. [1 ,2 ]
Matsunaga, H. [3 ,4 ,5 ]
Yamabe, J. [4 ,5 ,6 ]
Yoshikawa, M. [4 ]
Matsuoka, S. [4 ]
机构
[1] Kyushu Univ, Grad Sch Engn, Nishi Ku, 744 Motooka, Fukuoka 8190395, Japan
[2] Japan Soc Promot Sci, Nishi Ku, 744 Motooka, Fukuoka 8190395, Japan
[3] Kyushu Univ, Dept Mech Engn, Nishi Ku, 744 Motooka, Fukuoka 8190395, Japan
[4] Kyushu Univ, Res Ctr Hydrogen Ind Use & Storage HYDROGENIUS, Nishi Ku, 744 Motooka, Fukuoka 8190395, Japan
[5] Kyushu Univ, I2CNER, Nishi Ku, 744 Motooka, Fukuoka 8190395, Japan
[6] Kyushu Univ, Int Res Ctr Hydrogen Energy, Nishi Ku, 744 Motooka, Fukuoka 8190395, Japan
关键词
Carbon steel; S-N curve; Hydrogen embrittlement; Fatigue crack growth; Fracture toughness; EMBRITTLEMENT; MECHANISM; PROPAGATION; TENSILE; STRAIN;
D O I
10.1016/j.ijfatigue.2017.06.006
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
To investigate the effect of hydrogen on fatigue life characteristics and crack growth behaviors through the entire fatigue life of a carbon steel, tension-compression fatigue tests and elasto-plastic fracture toughness tests were conducted in a hydrogen gas environment under the pressures of 0.7 and 115 MPa. The fatigue tests revealed that the fatigue life and fracture morphology vary drastically with the hydrogen gas pressure. This study demonstrates that such differences can be explained by the combination of fatigue crack growth properties and fracture toughness properties in hydrogen gas at each pressure. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:223 / 233
页数:11
相关论文
共 38 条
[1]   Hydrogen embrittlement susceptibility of a weld simulated X70 heat affected zone under H2 pressure [J].
Alvaro, A. ;
Olden, V. ;
Macadre, A. ;
Akselsen, Odd Magne .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2014, 597 :29-36
[2]   Modeling the fatigue crack growth of X100 pipeline steel in gaseous hydrogen [J].
Amaro, Robert L. ;
Rustagi, Neha ;
Findley, Kip O. ;
Drexler, Elizabeth S. ;
Slifka, Andrew J. .
INTERNATIONAL JOURNAL OF FATIGUE, 2014, 59 :262-271
[3]  
[Anonymous], 2013, E182013 ASTM
[4]  
[Anonymous], 2008, T JPN SOC MECH ENG A, DOI DOI 10.1299/KIKAIA.74.1528
[5]  
[Anonymous], 1971, DAMAGE TOLERANCE AIR
[6]  
Beacham C. D., 1972, METALL MATER TRANS B, V3, P441, DOI DOI 10.1007/BF02642048
[7]  
Bichler CH, 1997, P INT C IMP UND FUND, P211
[8]   HYDROGEN-ENHANCED LOCALIZED PLASTICITY - A MECHANISM FOR HYDROGEN-RELATED FRACTURE [J].
BIRNBAUM, HK ;
SOFRONIS, P .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 1994, 176 (1-2) :191-202
[9]   Recent advances on hydrogen embrittlement of structural materials [J].
Dadfarnia, Mohsen ;
Nagao, Akihide ;
Wang, Shuai ;
Martin, May L. ;
Somerday, Brian P. ;
Sofronis, Petros .
INTERNATIONAL JOURNAL OF FRACTURE, 2015, 196 (1-2) :223-243
[10]  
Fukuyama S., 1985, Journal of the Society of Materials Science, Japan, V34, P709, DOI 10.2472/jsms.34.709