Coefficient estimates and radii problems for certain classes of polyharmonic mappings

被引:9
作者
Chen, J. [1 ]
Rasila, A. [1 ,2 ]
Wang, X. [1 ]
机构
[1] Hunan Normal Univ, Dept Math, Changsha 410081, Hunan, Peoples R China
[2] Aalto Univ, Dept Math & Syst Anal, FI-00076 Aalto, Finland
基金
芬兰科学院; 中国国家自然科学基金;
关键词
30C50; 30C45; close-to-convex; convex; harmonic mapping; starlike; coefficient estimates; partial sum; polyharmonic mapping; the Fekete-Szego problem; FEKETE-SZEGO PROBLEM; SECTIONS; CONVEXITY; STARLIKENESS; THEOREM;
D O I
10.1080/17476933.2014.936862
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give coefficient estimates for a class of close-to-convex harmonic mappings , and discuss the Fekete-Szego problem of it. We also determine a disk in which the partial sum is close-to-convex for each . Then, we introduce two classes of polyharmonic mappings and , consider the starlikeness and convexity of them and obtain coefficient estimates for them. Finally, we give a necessary condition for a mapping to be in the class .
引用
收藏
页码:354 / 371
页数:18
相关论文
共 43 条
[1]   THE FEKETE-SZEGO PROBLEM FOR STRONGLY CLOSE-TO-CONVEX FUNCTIONS [J].
ABDELGAWAD, HR ;
THOMAS, DK .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 114 (02) :345-349
[2]   Landau's theorem for biharmonic mappings [J].
Abdulhadi, Z. ;
Abu Muhanna, Y. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 338 (01) :705-709
[3]   On some properties of solutions of the biharmonic equation [J].
AbdulHadi, Z. ;
Abu Muhanna, Y. ;
Khuri, S. .
APPLIED MATHEMATICS AND COMPUTATION, 2006, 177 (01) :346-351
[4]   On univalent solutions of the biharmonic equation [J].
Abdulhadi, Z. ;
Abu Muhanna, Y. ;
Khuri, S. .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2005, 2005 (05) :469-478
[5]  
[Anonymous], 1983, Oxford Mathematical Monographs
[6]  
Avci Y., 1990, Ann. Univ. Mariae Curie-Skodowska sect. A, V44, P1
[7]  
Bharanedhar V, ARXIV11090925V2
[8]  
Chen J, 2013, MATH REP, V15, P343
[9]   Starlikeness and convexity of polyharmonic mappings [J].
Chen, J. ;
Rasila, A. ;
Wang, X. .
BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2014, 21 (01) :67-82
[10]   Landau's theorem for polyharmonic mappings [J].
Chen, J. ;
Rasila, A. ;
Wang, X. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 409 (02) :934-945