The elemental composition of the Sun II. The iron group elements Sc to Ni

被引:220
作者
Scott, Pat [1 ]
Asplund, Martin [2 ]
Grevesse, Nicolas [3 ,4 ]
Bergemann, Maria [5 ]
Sauval, A. Jacques [6 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Phys, Blackett Lab, London SW7 2AZ, England
[2] Australian Natl Univ, Res Sch Astron & Astrophys, Weston, ACT 2611, Australia
[3] Univ Liege, Ctr Spatial Liege, B-4031 Angleur Liege, Belgium
[4] Univ Liege, Inst Astrophys & Geophys, B-4000 Liege, Belgium
[5] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England
[6] Observ Royal Belgique, B-1180 Brussels, Belgium
基金
澳大利亚研究理事会;
关键词
Sun: abundances; Sun: photosphere; Sun: granulation; line: formation; line: profiles; convection; RELATIVE OSCILLATOR-STRENGTHS; SOLAR PHOTOSPHERIC ABUNDANCE; RF DOUBLE-RESONANCE; ABSOLUTE TRANSITION-PROBABILITIES; HYPERFINE-STRUCTURE MEASUREMENTS; FE-I TRANSITIONS; STERNHEIMER FREE DETERMINATION; NUCLEAR-QUADRUPOLE MOMENT; EXCITED MN-I; A1D2; 0.90; EV;
D O I
10.1051/0004-6361/201424110
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We redetermine the abundances of all iron group nuclei in the Sun, based on neutral and singly-ionised lines of Sc, Ti, V, Mn, Fe, Co and Ni in the solar spectrum. We employ a realistic 3D hydrodynamic model solar atmosphere, corrections for departures from local thermodynamic equilibrium (NLTE), stringent line selection procedures and high quality observational data. We have scoured the literature for the best quality oscillator strengths, hyperfine constants and isotopic separations available for our chosen lines. We find log epsilon(Sc) = 3.16 +/- 0.04, log epsilon(Ti) = 4.93 +/- 0.04, log epsilon(V) = 3.89 +/- 0.08, log epsilon(Cr) = 5.62 +/- 0.04, log epsilon(Mn) = 5.42 +/- 0.04, log epsilon(Fe) = 7.47 +/- 0.04, log epsilon(Co) = 4.93 +/- 0.05 and log epsilon(Ni) = 6.20 +/- 0.04. Our uncertainties factor in both statistical and systematic errors (the latter estimated for possible errors in the model atmospheres and NLTE line formation). The new abundances are generally in good agreement with the CI meteoritic abundances but with some notable exceptions. This analysis constitutes both a full exposition and a slight update of the preliminary results we presented in Asplund et al. (2009, ARA&A, 47, 481), including full line lists and details of all input data we employed.
引用
收藏
页数:33
相关论文
共 225 条
[1]   Hyperfine structure of ScI by infrared Fourier transform spectroscopy [J].
Aboussaid, A ;
Carleer, M ;
Hurtmans, D ;
Biemont, E ;
Godefroid, MR .
PHYSICA SCRIPTA, 1996, 53 (01) :28-32
[2]  
ADELMAN SJ, 1989, ASTRON ASTROPHYS SUP, V80, P285
[3]   OPTICAL ISOTOPE SHIFTS AND CHANGES IN NUCLEAR-CHARGE RADII OF STABLE TI ISOTOPES [J].
ANASTASSOV, A ;
GANGRSKY, YP ;
MARINOVA, KP ;
MARKOV, BN ;
ZEMLYANOI, SG .
ZEITSCHRIFT FUR PHYSIK D-ATOMS MOLECULES AND CLUSTERS, 1994, 30 (04) :275-278
[4]   ABUNDANCES OF THE ELEMENTS - METEORITIC AND SOLAR [J].
ANDERS, E ;
GREVESSE, N .
GEOCHIMICA ET COSMOCHIMICA ACTA, 1989, 53 (01) :197-214
[5]  
[Anonymous], 1997, Nucleosynthesis and Chemical Evolution of Galaxies
[6]  
[Anonymous], 1955, Physik der Sternatmospharen
[7]   WIDTH CROSS-SECTIONS FOR COLLISIONAL BROADENING OF S-P AND P-S TRANSITIONS BY ATOMIC-HYDROGEN [J].
ANSTEE, SD ;
OMARA, BJ .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1995, 276 (03) :859-866
[8]   Measurements of hyperfine structure in 51V II [J].
Armstrong, N. M. R. ;
Rosner, S. D. ;
Holt, R. A. .
PHYSICA SCRIPTA, 2011, 84 (05)
[9]  
ARNESEN A, 1982, ASTRON ASTROPHYS, V106, P327
[10]  
Asplund M, 2000, ASTRON ASTROPHYS, V359, P729