Approximate distributions for Maximum Likelihood and Maximum a posteriori estimates under a Gaussian noise model

被引:0
|
作者
Abbey, CK [1 ]
Clarkson, E
Barrett, HH
Muller, SP
Rybicki, FJ
机构
[1] Univ Arizona, Dept Radiol, Tucson, AZ 85724 USA
[2] Univ Arizona, Program Appl Math, Tucson, AZ 85721 USA
[3] Univ Arizona, Ctr Opt Sci, Tucson, AZ 85721 USA
[4] Univ Essen Gesamthsch Klinikum, Dept Nucl Med, D-45122 Essen, Germany
[5] Brigham & Womens Hosp, Boston, MA 02115 USA
[6] Harvard Univ, Sch Med, Boston, MA 02115 USA
来源
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The performance of Maximum Likelihood (ML) and Maximum a posteriori (MAP) estimates in nonlinear problems at low data SNR is not well predicted by the Cramer-Rao or other lower bounds on variance. In order to better characterize the distribution of ML and MAP estimates under these conditions, we derive an approximate density for the conditional distribution of such estimates. In one example, this approximate distribution captures the essential features of the distribution of ML and MAP estimates in the presence of Gaussian-distributed noise.
引用
收藏
页码:167 / 175
页数:9
相关论文
共 50 条
  • [41] Maximum likelihood characterization of distributions
    Duerinckx, Mitia
    Ley, Christophe
    Swan, Yvik
    BERNOULLI, 2014, 20 (02) : 775 - 802
  • [42] PERFORMANCE OF THE MAXIMUM LIKELIHOOD ESTIMATORS FOR THE PARAMETERS OF MULTIVARIATE GENERALIZED GAUSSIAN DISTRIBUTIONS
    Bombrun, Lionel
    Pascal, Frederic
    Tourneret, Jean-Yves
    Berthoumieu, Yannick
    2012 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2012, : 3525 - 3528
  • [43] Maximum likelihood parameter estimation of the asymmetric generalised Gaussian family of distributions
    Lee, JY
    Nandi, AK
    PROCEEDINGS OF THE IEEE SIGNAL PROCESSING WORKSHOP ON HIGHER-ORDER STATISTICS, 1999, : 255 - 258
  • [44] UNIQUENESS OF MAXIMUM LIKELIHOOD ESTIMATES OF PARAMETERS OF AN ARMA MODEL
    ASTROM, KJ
    SODERSTR.T
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (06) : 769 - 773
  • [45] Sample size for maximum-likelihood estimates of Gaussian model depending on dimensionality of pattern space
    Psutka, Josef V.
    Psutka, Josef
    PATTERN RECOGNITION, 2019, 91 : 25 - 33
  • [46] Maximum likelihood estimates of thoroughbred race horse profitability distributions.
    Vinzant, PL
    Neibergs, JS
    AMERICAN JOURNAL OF AGRICULTURAL ECONOMICS, 1998, 80 (05) : 1207 - 1208
  • [48] Approximate maximum likelihood estimators for array processing in multiplicative noise environments
    Besson, O
    Vincent, F
    Stoica, P
    Gershman, AB
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2000, 48 (09) : 2506 - 2518
  • [49] A local maximum likelihood model of crop yield distributions
    Wu, Ximing
    Zhang, Yu Yvette
    CANADIAN JOURNAL OF AGRICULTURAL ECONOMICS-REVUE CANADIENNE D AGROECONOMIE, 2020, 68 (01): : 117 - 125
  • [50] Fast, Approximate Maximum Likelihood Estimation of Log-Gaussian Cox Processes
    Dovers, Elliot
    Brooks, Wesley
    Popovic, Gordana C. C.
    Warton, David I. I.
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2023, 32 (04) : 1660 - 1670