Approximate distributions for Maximum Likelihood and Maximum a posteriori estimates under a Gaussian noise model

被引:0
|
作者
Abbey, CK [1 ]
Clarkson, E
Barrett, HH
Muller, SP
Rybicki, FJ
机构
[1] Univ Arizona, Dept Radiol, Tucson, AZ 85724 USA
[2] Univ Arizona, Program Appl Math, Tucson, AZ 85721 USA
[3] Univ Arizona, Ctr Opt Sci, Tucson, AZ 85721 USA
[4] Univ Essen Gesamthsch Klinikum, Dept Nucl Med, D-45122 Essen, Germany
[5] Brigham & Womens Hosp, Boston, MA 02115 USA
[6] Harvard Univ, Sch Med, Boston, MA 02115 USA
来源
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The performance of Maximum Likelihood (ML) and Maximum a posteriori (MAP) estimates in nonlinear problems at low data SNR is not well predicted by the Cramer-Rao or other lower bounds on variance. In order to better characterize the distribution of ML and MAP estimates under these conditions, we derive an approximate density for the conditional distribution of such estimates. In one example, this approximate distribution captures the essential features of the distribution of ML and MAP estimates in the presence of Gaussian-distributed noise.
引用
收藏
页码:167 / 175
页数:9
相关论文
共 50 条