Approximate distributions for Maximum Likelihood and Maximum a posteriori estimates under a Gaussian noise model

被引:0
|
作者
Abbey, CK [1 ]
Clarkson, E
Barrett, HH
Muller, SP
Rybicki, FJ
机构
[1] Univ Arizona, Dept Radiol, Tucson, AZ 85724 USA
[2] Univ Arizona, Program Appl Math, Tucson, AZ 85721 USA
[3] Univ Arizona, Ctr Opt Sci, Tucson, AZ 85721 USA
[4] Univ Essen Gesamthsch Klinikum, Dept Nucl Med, D-45122 Essen, Germany
[5] Brigham & Womens Hosp, Boston, MA 02115 USA
[6] Harvard Univ, Sch Med, Boston, MA 02115 USA
来源
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The performance of Maximum Likelihood (ML) and Maximum a posteriori (MAP) estimates in nonlinear problems at low data SNR is not well predicted by the Cramer-Rao or other lower bounds on variance. In order to better characterize the distribution of ML and MAP estimates under these conditions, we derive an approximate density for the conditional distribution of such estimates. In one example, this approximate distribution captures the essential features of the distribution of ML and MAP estimates in the presence of Gaussian-distributed noise.
引用
收藏
页码:167 / 175
页数:9
相关论文
共 50 条
  • [1] MAXIMUM LIKELIHOOD ESTIMATORS AND A POSTERIORI DISTRIBUTIONS
    WOLFOWITZ, J
    ANNALS OF MATHEMATICAL STATISTICS, 1952, 23 (04): : 643 - 644
  • [2] Sample Size for Maximum Likelihood Estimates of Gaussian Model
    Psutka, Josef V.
    Psutka, Josef
    COMPUTER ANALYSIS OF IMAGES AND PATTERNS, CAIP 2015, PT II, 2015, 9257 : 462 - 469
  • [3] Approximate Maximum a Posteriori with Gaussian Process Priors
    Markus Hegland
    Constructive Approximation, 2007, 26 : 205 - 224
  • [4] Approximate maximum a posteriori with Gaussian process priors
    Hegland, Markus
    CONSTRUCTIVE APPROXIMATION, 2007, 26 (02) : 205 - 224
  • [5] An approximate maximum a posteriori method with Gaussian process priors
    Hegland, Markus
    CONTRIBUTIONS TO PROBABILITY AND STATISTICS: APPLICATIONS AND CHALLENGES, 2006, : 261 - 275
  • [6] Maximum likelihood estimates of some probability model of discrete distributions
    Iskakova, A.
    Zhaxybayeva, G.
    BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2018, 89 (01): : 61 - 69
  • [7] Maximum likelihood modeling with Gaussian distributions for classification
    Gopinath, RA
    PROCEEDINGS OF THE 1998 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-6, 1998, : 661 - 664
  • [8] Maximum-Likelihood and Maximum-A-Posteriori estimates of human-observer templates
    Abbey, CK
    Eckstein, MP
    MEDICAL IMAGING 2001: IMAGE PERCEPTION AND PERFORMANCE, 2001, 4324 : 114 - 122
  • [9] APPROXIMATE MAXIMUM LIKELIHOOD ESTIMATES FROM GROUPED DATA
    TALLIS, GM
    TECHNOMETRICS, 1967, 9 (04) : 599 - &
  • [10] MAXIMUM LIKELIHOOD AND MAXIMUM A POSTERIORI DIRECTION-OF-ARRIVAL ESTIMATION IN THE PRESENCE OF SIRP NOISE
    Zhang, Xin
    El Korso, Mohammed Nabil
    Pesavento, Marius
    2016 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING PROCEEDINGS, 2016, : 3081 - 3085