Approximation in the mean by bounded analytic functions

被引:0
作者
Yang, LM [1 ]
机构
[1] UNIV HAWAII,DEPT MATH,HONOLULU,HI 96822
关键词
D O I
10.1007/BF01262300
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let 1 < p < infinity and 1/p + 1/q = 1. Let C-q denote the Bessel capacity in the plane. Let M(lambda) be the set of homomorphisms phi of H-infinity(G) such that phi(z) = lambda and let NP denote the set of points lambda in partial derivative G for which M(lambda) is not a peak set for H-infinity(G). In this note, we show that if C-q(NP) = 0, then H-infinity(G) is dense in L(a)(p)(G), the Bergman space over G.
引用
收藏
页码:373 / 376
页数:4
相关论文
共 6 条
[1]  
Gamelin T.W., 1969, UNIFORM ALGEBRAS
[2]   DISTINGUISHED HOMOMORPHISMS AND FIBER ALGEBRAS [J].
GAMELIN, TW ;
GARNETT, J .
AMERICAN JOURNAL OF MATHEMATICS, 1970, 92 (02) :455-&
[3]   NONLINEAR POTENTIALS AND APPROXIMATION IN MEAN BY ANALYTIC-FUNCTIONS [J].
HEDBERG, LI .
MATHEMATISCHE ZEITSCHRIFT, 1972, 129 (04) :299-319
[4]  
LINDBERG P, 19777 UUDM
[5]   THEORY OF CAPACITIES FOR POTENTIALS OF FUNCTIONS IN LEBESGUE CLASSES [J].
MEYERS, NG .
MATHEMATICA SCANDINAVICA, 1970, 26 (02) :255-&
[6]  
Shields A., 1974, MATH SURVEYS, V13, P49